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The emergence of capable agentic AI systems
has begun to shift the practical boundaries
of software engineering. Senior engineers,

working in partnership with AI coding agents, can
now deliver systems whose scope and coherence
previously demanded coordinated human teams.
This transformation alters the economics of soft-
ware work: execution accelerates, iteration be-
comes inexpensive, and coordination within the
human–AI unit largely disappears. The central
constraints shift outward, toward governance, ar-
chitectural boundaries, and inter-unit alignment.

This essay examines that shift through an eval-
uation of established delivery frameworks and
organizational structures, identifying which re-
main compatible with an environment where
the centaur—a hybrid of human judgment and
machine-driven execution—emerges as a new unit
of production. The analysis is illustrated by lockd,
a non-trivial coordination service created by a
senior engineer in tandem with an AI agent in
roughly five weeks of spare time, demonstrating
the practical viability of this mode of work.
The resulting picture suggests a reorienta-

tion of software engineering around autonomy,
modularity, and automated governance, with
coordination—not implementation—becoming
the primary bottleneck in increasingly centaur-
shaped organizations.
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INTRODUCTION

For most of the history of software engineer-
ing, the fundamental constraint has been human
cognitive capacity. Classic accounts of software
projects describe coordination overhead, limited
communication bandwidth, and the difficulty of
maintaining shared understanding as primary
bottlenecks (Brooks, 1995; Conway, 1968). De-
livery frameworks and organizational models—
from plan-driven methods to agile and DevOps
practices—can be understood as structured re-
sponses to those constraints, seeking to econo-
mize on scarce human attention and to manage
the flow of information through teams and hier-
archies (Cockburn, 2001; Highsmith, 2001; Hum-
ble, Molesky, and O’Reilly, 2015; Galbraith, 1974;
Burns and Stalker, 1961).

Around 2025, a qualitatively different situation
emerged. A new class of large-language-model-
driven development environments and agentic
workflows made it practically feasible for expe-
rienced engineers to offload substantial portions
of design, coding, testing, and operational tasks to
AI systems, without spending more time correct-
ing errors than the tools saved. Empirical studies
of AI-assisted programming already indicate sig-
nificant productivity gains for certain task types,
alongside mixed effects on code quality and se-
curity (Peng, 2023; Hamza et al., 2023; Ercin,
2025; Oladele and Lawal, 2025; Schreiber, 2025).
At the same time, research on human–AI collab-
oration and AI “teammates” highlights novel co-
ordination challenges, including trust calibration,
responsibility attribution, and the management of
opaque model behaviour (Seeber, 2020; Shneider-
man, 2020; Schmutz, 2024).
This paper takes that post-2025 reality as a

starting point. We1 assume a centaur model of
software development in the spirit of Kasparov’s
advanced chess: a human expert working in tight
cognitive partnership with machine agents, where
the human provides framing, judgment, and ac-
countability, and the AI systems provide search,
execution, and rapid exploration (Kasparov, 2017;
Alves and Cipriano, 2023). In this setting, a single
senior engineer, augmented by such tools, can fre-
quently execute end-to-end work—architecture,
implementation, testing, and operations—that
previously required a coordinated team. Crucially,

1“We” is intentional as the essay was written by a centaur unit.

this is not a claim about the disappearance of hu-
man labor or the obsolescence of teams, but about
a changed unit of effective action: a centaur-like
human–AI unit can now perform work packages
that most existing methods were designed to allo-
cate to multi-person groups.
Most established delivery frameworks and or-

ganizational structures were not designed with
this unit in mind. Scrum, Extreme Programming,
Kanban, scaled frameworks such as SAFe and
LeSS, and outcome-oriented approaches such as
Lean Startup all embody particular assumptions
about how work is discovered, sliced, assigned,
and synchronized in human-only teams (Beck,
1999; Anderson, 2010; Scaled Agile Inc., 2021;
Larman and Vodde, 2017; Ries, 2011). Organi-
zational designs such as functional hierarchies,
product divisions, matrix structures, and mod-
ern team-based configurations similarly encode
trade-offs between centralization, local autonomy,
and information-processing capacity (Mintzberg,
1979; Galbraith, 1974; Senge, 1990; Skelton and
Pais, 2019). None of these bodies of work explic-
itly anticipates a world in which an individual se-
nior engineer plus AI agents can act, for many pur-
poses, as a “micro-team” with its own exploratory
and delivery capability.

THE AIM of this exploratory essay is to exam-
ine how frameworks and organizational models
align with a centaur development reality. We do
not attempt a comprehensive empirical evalua-
tion; quantitative evidence on AI-augmented de-
velopment remains sparse and rapidly evolving.
Instead, we combine (i) established research on
coordination, organizational design, and software
delivery performance; (ii) emerging findings on
AI-assisted programming, security, and human–AI
collaboration; and (iii) practitioner observations
from projects by senior engineers working with
agentic tools. On this basis, we propose evalua-
tion dimensions for delivery frameworks and orga-
nizational models, and assess their compatibility
with individual-plus-AI development. The analysis
brackets “replacement” narratives: the question is
not whether AI will substitute for developers, but
how human work, coordination structures, and
governance must evolve when a single senior cen-
taur unit can do what once required an entire
team.
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BACKGROUND

COORDINATION AND THE EVOLUTION
OF SOFTWARE METHODS

Software engineering methods have historically
emerged as responses to coordination constraints.
Early observations by Brooks (Brooks, 1995) and
Conway (Conway, 1968) highlighted the commu-
nication overhead inherent in multi-person de-
velopment and the structural coupling between
organizational boundaries and software archi-
tectures. Subsequent research across organi-
zational theory reinforced these findings: Gal-
braith’s information-processing view of organi-
zations (Galbraith, 1974), Mintzberg’s structural
configurations (Mintzberg, 1979), and Burns and
Stalker’s analysis of mechanistic versus organic
forms (Burns and Stalker, 1961) all frame coordi-
nation capacity, not individual productivity, as the
limiting factor in complex environments.
Process models and delivery frameworks can

thus be understood as mechanisms to manage
these structural constraints. Plan-driven ap-
proaches formalized control through sequential
stages and documentation; agile methods shifted
the emphasis toward short feedback cycles, shared
understanding, and direct collaboration (Cock-
burn, 2001; Highsmith, 2001). Practices such
as Scrum (Schwaber and Sutherland, 2017) and
Extreme Programming (Beck, 1999) sought to
minimize misalignment through stable teams,
bounded work-in-progress, and iterative planning.
DevOps and Lean Enterprise variants (Humble,
Molesky, and O’Reilly, 2015; Forsgren, Humble,
and Kim, 2018) extended these ideas to bridge
development and operations, emphasizing contin-
uous delivery, telemetry, and reduction of batch
sizes. Across these traditions, the core assumption
is constant: software delivery is a socio-technical
process in which human coordination effort is the
principal bottleneck.

HUMAN–MACHINE COLLABORATION
AND THE CENTAUR MODEL

The rise of machine assistance in knowledge work
has long been framed through the lens of human–
machine symbiosis. Hutchins’ theory of distributed
cognition (Hutchins, 1995) conceptualizes cog-
nitive work as spanning humans, artifacts, and
representational structures. Naturalistic decision-

making research (e.g., Klein (Klein, 2008)) high-
lights how experts integrate environmental cues,
pattern recognition, and iterative reframing in
high-uncertainty domains—a pattern mirrored in
modern software design and troubleshooting.

Kasparov’s notion of advanced chess introduced
the “centaur” model, in which human strategic
judgment combines with machine computational
capacity (Kasparov, 2017). Empirical outcomes in
chess demonstrated that human–machine teams
could outperform both humans and machines op-
erating alone, not due to raw computation but due
to the complementary interplay between human
framing and machine search. Recent accounts ex-
tend the centaur metaphor to professional work
more broadly (Alves and Cipriano, 2023), arguing
that the locus of expertise shifts from handcrafted
output to directing, interpreting, and governing
machine activity.

Parallel streams in human–AI teaming research
emphasize similar dynamics. Seeber et al. (Seeber,
2020) outline coordination, trust, and responsibil-
ity as persistent challenges when AI systems act
as teammates rather than tools. Work on human-
centered AI (Shneiderman, 2020) stresses the im-
portance of oversight structures and predictable in-
teraction patterns. Emerging studies of AI-assisted
programming identify both productivity benefits
(Peng, 2023; Hamza et al., 2023) and new risks as-
sociated with opaque model behavior and security
vulnerabilities in AI-generated code (Oladele and
Lawal, 2025; Schreiber, 2025). Together, these
lines of research suggest that machine assistance
alters the distribution of cognitive labor but does
not eliminate the need for human framing, verifi-
cation, and governance.
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DELIVERY FRAMEWORKS AND
ORGANIZATIONAL MODELS AS
COORDINATION REGIMES

Delivery frameworks and organizational struc-
tures encode assumptions about how coordination
should occur. Scrum and related agile methods
assume stable teams, frequent synchronous com-
munication, and shared responsibility for prod-
uct increments (Schwaber and Sutherland, 2017).
Kanban emphasizes flow efficiency and adaptive
pull-based coordination (Anderson, 2010). Scaled
frameworks such as SAFe (Scaled Agile Inc., 2021)
and LeSS (Larman and Vodde, 2017) introduce
multi-team synchronization mechanisms intended
to preserve alignment at higher organizational
layers. Lean Startup (Ries, 2011) reorients de-
livery around hypothesis testing and rapid exper-
imentation, while DevOps and SRE embed de-
livery within socio-technical systems of automa-
tion, feedback, and monitoring (Humble, Molesky,
and O’Reilly, 2015; Forsgren, Humble, and Kim,
2018).

Organizational models similarly represent co-
ordination regimes. Functional hierarchies op-
timize for specialization but introduce cross-
boundary dependencies; divisional structures em-
phasize local autonomy; matrix configurations at-
tempt to balance expertise and product alignment
(Mintzberg, 1979). Contemporary approaches
such as team-based topologies (Skelton and Pais,
2019) andmodular organizational forms (Sanchez
and Mahoney, 1996) seek to reduce interdepen-
dence by structuring the organization into semi-
autonomous units with well-defined interaction
surfaces.

Across all these methods and structures, the
central assumption is that coordination must be
managed among groups of humans. None of them
explicitly anticipate a setting in which an indi-
vidual senior engineer, augmented by agentic AI
systems, can perform the exploration, implemen-
tation, and operational work previously requiring
a team. The centaur development reality intro-
duced in Introduction (p. 2) therefore raises foun-
dational questions about the continued suitability
of these coordination regimes.

THE POST-2025 CENTAUR
DEVELOPMENT REALITY

THE CAPABILITY INFLECTION POINT

By 2025, agentic large-language-model (LLM) sys-
tems reached a practical threshold at which ex-
perienced engineers could delegate substantial
portions of software work—including design ex-
ploration, implementation, refactoring, test gen-
eration, and operational tasks—without incurring
prohibitive verification or correction overhead.
This shift did not arise from a single product or
vendor, but from the convergence of several devel-
opments: improved context handling, more reli-
able tool use, iterative code-editing capabilities,
and tighter integration between natural-language
specifications and executable artifacts. Empiri-
cal studies of AI-assisted programming already
show meaningful productivity improvements on
well-scoped tasks (Peng, 2023), while also iden-
tifying limitations and risks in areas such as se-
curity, correctness, and maintainability (Ercin,
2025; Oladele and Lawal, 2025; Schreiber, 2025).
These findings align with broader observations
in human–AI teaming research, which emphasize
that AI systems can extend human capability but
also introduce new coordination demands (Seeber,
2020; Schmutz, 2024).

The significance of this inflection point lies not
merely in faster code production but in the re-
configuration of the unit of effective work. Tasks
that previously required a cross-functional team—
encompassing design, coding, testing, and oper-
ational knowledge—can now be executed by a
single senior engineer working in close cognitive
partnership with AI agents. This does not elimi-
nate the role of teams; rather, it changes the granu-
larity at which teams add value. Many work items
that required intra-team coordination can now be
handled within a single human–AI unit, while co-
ordination mechanisms between units, systems,
and organizational boundaries remain critical.
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HUMAN ROLES

Despite rapid advances in agentic tooling, human
expertise remains essential for the tasks that re-
quire contextual reasoning, uncertainty manage-
ment, and domain-specific judgment. Research on
naturalistic decision making (Klein, 2008) and dis-
tributed cognition (Hutchins, 1995) suggests that
experts excel at recognizing patterns, identifying
anomalies, reframing problems, and integrating
diverse cues—capabilities that AI systems do not
yet replicate reliably. In the centaur development
setting, senior engineers provide:

• Problem framing and abstraction: deter-
mining the boundaries, constraints, and in-
tended behavior of the system.

• Architectural and design judgment: evalu-
ating trade-offs, selecting structural patterns,
and managing long-term consequences.

• Verification and interpretation: validating
AI-generated artifacts, interpreting failures,
and ensuring alignment with requirements.

• Governance and ethical oversight: main-
taining security, safety, compliance, and re-
sponsible use of automation.

These responsibilities are amplified, not dimin-
ished, by the presence of AI agents. While AI can
accelerate hypothesis generation and code syn-
thesis, it also increases the need for systematic
verification and oversight, reflecting well-known
concerns in human-centered AI (Shneiderman,
2020). The centaur pattern thus resembles ad-
vanced chess (Kasparov, 2017): the human pro-
vides strategic framing and quality control, while
the AI executes rapid tactical exploration.

MACHINE ROLES

AI agents contribute fundamentally different ca-
pabilities from human engineers. Whereas human
expertise is optimized for contextual reasoning,
AI systems excel at high-throughput search, rapid
transformation of code, and generating multiple
candidate solutions. In software development, this
includes:

• Rapid code synthesis and refactoring: pro-
ducing initial implementations or transform-
ing existing ones.

• Exploratory prototyping: generating alter-
native design or implementation pathways
for comparison.

• Automated test generation: constructing
test harnesses and examples that support ver-
ification.

• Operational interactions: issuing com-
mands, inspecting system state, or propos-
ing remediation steps when integrated with
tools.

These capabilities reduce execution cost and in-
crease the feasibility of high-frequency iteration—
both core determinants of performance in mod-
ern delivery settings (Forsgren, Humble, and Kim,
2018). However, they do not eliminate coordi-
nation demands. AI-generated artifacts must be
integrated, validated, and aligned with architec-
tural intent, and AI-driven changes can introduce
new security or reliability concerns, as recent stud-
ies highlight (Oladele and Lawal, 2025; Schreiber,
2025). Thus, machine capability shifts the distri-
bution of labor but not the necessity of human
governance.
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NEW COORDINATION AND
GOVERNANCE CHALLENGES

The centaur development reality introduces coor-
dination challenges that are distinct from those
addressed by existing delivery frameworks. Tradi-
tional methods assume that coordination overhead
arises from communication between humans—
synchronizing requirements, designs, and work
across a team. In a human–AI unit, intra-unit
coordination becomes comparatively cheap: the
engineer and AI agents can iterate rapidly, ex-
plore alternatives, and refine solutions without
the scheduling, alignment, or role-boundary con-
straints of a multi-person team.
At the same time, several new forms of coordi-

nation emerge:

• Verification coordination: ensuring that
AI-generated code is correct, secure, main-
tainable, and aligned with architectural con-
straints; this often becomes the dominant
cost.

• Cognitive boundary management: main-
taining situational awareness despite rapid
model-driven changes, a known challenge in
human–AI teaming (Seeber, 2020; Schmutz,
2024).

• Governance integration: embedding auto-
mated tests, policy checks, and security anal-
ysis into AI-driven workflows.

• Cross-unit alignment: coordinating with
other teams, systems, and organizational
structures that still operate within human-
centric rhythms and constraints.

These challenges imply that while AI may col-
lapse coordination costs within a centaur unit,
it does not eliminate the need for coordination
across units. Architectures, organizational bound-
aries, compliance frameworks, and strategic di-
rection all continue to impose constraints. De-
livery frameworks and organizational models—
designed for human-only teams—must therefore
be re-evaluated in light of this altered distribution
of coordination effort.

IMPLICATIONS FOR DELIVERY
FRAMEWORKS AND ORGANIZATIONAL
MODELS

The shift in the effective unit of work from a hu-
man team to a centaur unit has direct implica-
tions for how coordination structures add value.
Frameworks that assume synchronous team ritu-
als, strict role separations, or batch-oriented work
may impose unnecessary overhead when a sin-
gle centaur unit can execute the full delivery cy-
cle. Conversely, organizational models that excel
at managing cross-boundary coordination, gov-
ernance, and architectural integrity may become
more important, not less.
These considerations motivate the evaluation

dimensions introduced in subsequent sections. De-
livery frameworks are assessed along axes such as
dependency on role specialization, synchronous
coordination, and alignment with rapid explo-
ration. Organizational models are assessed ac-
cording to their ability to support decentralized
decision-making, cross-boundary coherence, and
robust governance in environments where centaur
units operate as semi-autonomous micro-teams.
The centaur development reality does not invali-
date existing methods, but it shifts the criteria by
which their suitability must be judged.
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COORDINATION THEORY BASIS

Coordination has long been recognized as the cen-
tral challenge of software engineering. Brooks
(Brooks, 1995) identified communication over-
head, conceptual integrity, and the difficulty of
aligning multiple humans’ mental models as dom-
inant sources of cost. Conway’s law (Conway,
1968) formalized the structural coupling between
organizational communication patterns and soft-
ware architectures, implying that coordination
structures shape technical outcomes as much as
technical decisions do.

Organizational theory provides further ground-
ing for these observations. Galbraith’s information-
processing model (Galbraith, 1974) frames or-
ganizations as mechanisms for managing uncer-
tainty through coordination, specialization, and
integration. Mintzberg’s structural configurations
(Mintzberg, 1979) describe how different orga-
nizational forms—functional, divisional, matrix,
or adhocratic—balance centralization, autonomy,
and information flow. Burns and Stalker’s distinc-
tion between mechanistic and organic systems
(Burns and Stalker, 1961) highlights how tur-
bulent environments favor decentralized, adap-
tive structures over rigid hierarchies. Collectively,
these bodies of work converge on a shared view:
coordination is the primary limiting factor in com-
plex, interdependent work.

Software delivery frameworks encode coordina-
tion strategies derived from these principles. Agile
methods emphasize synchronous communication,
shared responsibility, and cross-functional teams
to reduce misalignment costs (Cockburn, 2001;
Highsmith, 2001). Scrum operationalizes coordi-
nation through timeboxed events and role distinc-
tions (Schwaber and Sutherland, 2017). Extreme
Programming promotes tight feedback loops and
collective code ownership (Beck, 1999). Kanban
(Anderson, 2010) and Lean perspectives focus on
flow efficiency and reduction of batch sizes. De-
vOps and SRE extend these ideas by automating
integration, deployment, and monitoring to re-
duce coordination friction across the development–
operations boundary (Forsgren, Humble, and Kim,
2018; Humble, Molesky, and O’Reilly, 2015).
Each framework implicitly assumes that coordi-
nation occurs between humans, and that the diffi-
culty of achieving shared context is a fundamental
constraint.

Human–AI teaming research reinforces the im-
portance of coordination mechanisms. Seeber et
al. (Seeber, 2020) describe coordination, trust cal-
ibration, and responsibility attribution as recur-
ring challenges when AI systems act as collabora-
tors rather than tools. Schmutz et al. (Schmutz,
2024) emphasize the need for clear interaction
patterns and governance structures to support
mixed human–AI teams. Human-centered AI work
(Shneiderman, 2020) similarly stresses oversight,
transparency, and predictable behavior as prereq-
uisites for safe and effective collaboration.
The post-2025 centaur development reality al-

ters the distribution of coordination effort. In a
human-only team, coordination costs arise pri-
marily from communication, synchronization, and
the maintenance of shared understanding. In
a human–AI unit, many of these costs dimin-
ish: the engineer and AI agents can iterate asyn-
chronously at high frequency, maintain a shared
context through persistent state and prompts, and
explore alternatives without incurring interper-
sonal alignment overhead. However, new forms of
coordination emerge, including verification of AI-
generated artifacts, governance of tool behavior,
and alignment across organizational boundaries.

This shift does not eliminate the need for coor-
dination; it redistributes it. Frameworks that rely
on synchronous rituals, rigid role separations, or
batch-oriented planning may impose unnecessary
overhead when a single centaur unit can execute
substantial portions of the delivery cycle internally.
Conversely, organizational models that emphasize
decentralized decision-making, modular interac-
tion surfaces, and automated governance may bet-
ter accommodate this altered landscape. These
theoretical considerations motivate the evaluation
dimensions introduced in the following sections,
which assess delivery frameworks and organiza-
tional models according to their alignment with
the coordination demands of centaur-based soft-
ware development.
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DELIVERY FRAMEWORK EVALUATION MODEL

To evaluate delivery frameworks under the centaur development paradigm, we require a scoring model
that is transparent, reproducible, and aligned with the coordination theory foundations established earlier.
This section defines six dimensions (D1–D6), each operationalized through three binary indicators.
All indicators are phrased in positive form: a score of 1 means alignment with centaur development,
and a score of 0 means misalignment. This ensures semantic consistency across dimensions and avoids
interpretive inversion.

For any framework F , each indicator Ik,j(F ) takes the value 1 (aligned) or 0 (not aligned). The raw
dimension score is:

Rk(F ) = 1
3

3∑
j=1

Ik,j(F ), Tk(F ) =


0 if Rk(F ) < 1

3 ,

0.5 if 1
3 ≤ Rk(F ) < 2

3 ,

1 if Rk(F ) ≥ 2
3 .

The resulting ternary vector T (F ) for each framework is thus mechanically derived and fully auditable.
An overall compatibility score for a framework can be reported as the mean of its six ternary dimension
scores:

Toverall(F ) = 1
6

6∑
k=1

Tk(F ).

A quick pseudo-code summary (each indicator is 0 or 1):
i1, i2, i3 = three indicators for dimension

R = (i1 + i2 + i3) / 3

if R < 1/3: T = 0

elif R < 2/3: T = 0.5

else: T = 1

Table 1: Delivery Evaluation Dimensions (D1–D6): Summary

Dimension Focus

D1 Independence from synchronous team rituals
D2 Flexibility of roles and boundaries
D3 Support for rapid exploration and micro-iterations
D4 Alignment with automated governance and verification
D5 Architectural flexibility under uncertainty
D6 Compatibility with AI-agent workflows
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D1: INDEPENDENCE FROM SYNCHRONOUS TEAM RITUALS

Centaur development reduces the need for synchronous human coordination by allowing rapid, asyn-
chronous cycles between the engineer and AI agents. Heavy reliance on ceremonies imposes avoidable
coordination cost. Based on coordination research (Cockburn, 2001; Schwaber and Sutherland, 2017),
we evaluate:

D1.1) Can the framework be executed without mandatory synchronous ceremonies?
D1.2) Does the framework emphasize artifacts, tooling, or asynchronous workflows rather than meetings

as primary coordination mechanisms?
D1.3) Does the framework permit continuous progress without waiting for scheduled events?

A high score indicates a lightweight, asynchronous coordination model compatible with centaur
workflows.

D2: FLEXIBILITY OF ROLES AND BOUNDARIES

In centaur development, a single senior engineer spans many responsibilities. Rigid role separation can
introduce unnecessary friction. Following organizational theory on role flexibility (Burns and Stalker,
1961; Mintzberg, 1979), we evaluate:

D2.1) Does the framework allow roles to be combined or minimized?
D2.2) Are responsibilities described in capability terms rather than strict role boundaries?
D2.3) Can a single unit (human–AI) reasonably execute the method without requiring multiple human

roles?

High D2 indicates compatibility with generalist, micro-unit centaur teams.

D3: SUPPORT FOR RAPID EXPLORATION AND MICRO-ITERATIONS

Centaur development enables extremely rapid exploration. Frameworks that enforce rigid batch cycles
or planning horizons impede this. Research on iteration speed (Forsgren, Humble, and Kim, 2018; Ries,
2011) motivates:

D3.1) Does the framework allow continuous or near-continuous iteration?
D3.2) Can work items be re-planned or adapted at any time?
D3.3) Does the framework support micro-iterations (very small batch sizes) over fixed-length cycles?

High scores indicate strong alignment with AI-accelerated iteration.

D4: ALIGNMENT WITH AUTOMATED GOVERNANCE AND VERIFICATION

Human–AI teaming increases the importance of automated verification and continuous governance
(Forsgren, Humble, and Kim, 2018; Shneiderman, 2020). We evaluate:

D4.1) Does the framework encourage automated testing or continuous integration as integral practices?
D4.2) Are fast feedback loops (tests, metrics, monitoring) structurally supported?
D4.3) Can governance be embedded into automated pipelines rather than relying on manual gates?

High D4 indicates strong fit with AI-driven workflows requiring continuous assurance.
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D5: ARCHITECTURAL FLEXIBILITY UNDER UNCERTAINTY

AI-assisted development reduces the cost of exploring design alternatives, making emergent architecture
more viable (Sanchez and Mahoney, 1996; Larman and Vodde, 2017). We evaluate:

D5.1) Does the framework support incremental or emergent architecture?
D5.2) Are refactoring and architectural evolution treated as routine rather than exceptional?
D5.3) Does the framework assume modularity or other structures enabling architectural adaptability?

High D5 reflects compatibility with dynamic architectural evolution.

D6: COMPATIBILITY WITH AI-AGENT WORKFLOWS

Frameworks vary in how easily they incorporate automation, tool integration, and agentic execution.
Based on socio-technical principles (Humble, Molesky, and O’Reilly, 2015; Ries, 2011), we evaluate:

D6.1) Is the framework agnostic to whether execution is performed by humans, tools, or AI agents?
D6.2) Does the framework encourage extensive automation and integration with tooling?
D6.3) Would the framework’s coordination mechanisms remain valid if a large proportion of execution

were automated?

High D6 indicates conceptual synergy with agentic development.
Together, these six dimensions form a consistent, positive-indicator evaluation model. They allow

delivery frameworks to be assessed transparently with respect to the coordination demands of centaur
development. Evaluation of Delivery Frameworks (p. 14) applies this model to a set of widely used
frameworks.
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ORGANIZATIONAL MODEL EVALUATION MODEL

Organizational structures determine how coordination, authority, and information flow scale across
socio-technical systems. Under centaur development, intra-unit coordination becomes inexpensive,
while inter-unit coordination, governance, and architectural alignment remain essential. Consequently,
organizational models must be evaluated for their ability to support semi-autonomous centaur micro-
units while still enabling coherence across a larger system.
This section defines six organizational dimensions (O1–O6), each evaluated using three binary

indicators phrased in positive form: a value of 1 denotes alignment with centaur development, while
0 denotes misalignment. This ensures consistency with the delivery-model scoring from Delivery
Framework Evaluation Model (p. 8).
For any organizational model M :

Rk(M) = 1
3

3∑
j=1

Ik,j(M), Tk(M) =


0 if Rk(M) < 1

3 ,

0.5 if 1
3 ≤ Rk(M) < 2

3 ,

1 if Rk(M) ≥ 2
3 .

A quick pseudo-code summary (each indicator is 0 or 1):
i1, i2, i3 = three indicators for dimension

R = (i1 + i2 + i3) / 3

if R < 1/3: T = 0

elif R < 2/3: T = 0.5

else: T = 1

A high score indicates strong compatibility with the coordination needs of centaur development. An
overall compatibility score for a model can be reported as the mean of its six ternary dimension scores:

Toverall(M) = 1
6

6∑
k=1

Tk(M).

Table 2: Organizational Evaluation Dimensions (O1–O6): Summary

Dimension Focus

O1 Local autonomy and span-of-control flexibility
O2 Decentralization of decision authority
O3 Efficiency of cross-boundary alignment mechanisms
O4 Integration of automated governance and compliance
O5 Adaptability to high-flux, high-iteration work
O6 Accommodation of micro-units and variable topology
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O1: LOCAL AUTONOMY AND SPAN-OF-CONTROL FLEXIBILITY

Organizations with broad local decision rights and limited hierarchical interference enable centaur
units to iterate quickly and adaptively, consistent with organic structures (Burns and Stalker, 1961;
Mintzberg, 1979). We evaluate:

O1.1) Can delivery units make routine decisions without requiring multi-layer hierarchical approval?
O1.2) Is the span of control structured such that supervisors oversee relatively few units, allowing rapid

vertical communication when needed?
O1.3) Are units explicitly empowered to select or adapt their own workflows, processes, or engineering

approaches?

High O1 indicates an organizational environment that does not impede the autonomy of centaur
micro-units.

O2: DECENTRALIZATION OF DECISION AUTHORITY

Galbraith’s information-processing view (Galbraith, 1974) and agile organizational principles (Highsmith,
2001) emphasize that decisions should be made where information resides. For centaur development,
this is the human–AI unit. We evaluate:

O2.1) Are prioritization, architectural, or implementation decisions delegated to the teams or units closest
to the work?

O2.2) Does the model minimize reliance on PMOs, steering committees, or central boards for tactical
decisions?

O2.3) Is decentralized decision-making explicitly encouraged in high-uncertainty or rapidly changing
environments?

High O2 indicates strong alignment with distributed, knowledge-based decision authority required by
centaur workflows.

O3: EFFICIENCY OF CROSS-BOUNDARY ALIGNMENT MECHANISMS

Centaur units reduce coordination within a team, but cross-unit alignment remains essential. Modular
systems theory (Sanchez and Mahoney, 1996) and team-based topologies (Skelton and Pais, 2019)
emphasize minimizing synchronous cross-team coordination through clear boundaries and interfaces.
We evaluate:

O3.1) Does the model emphasize modular boundaries (APIs, SLAs, service contracts) over meetings for
cross-team alignment?

O3.2) Are dependencies managed primarily through artifacts or tooling rather than synchronous coordina-
tion sessions?

O3.3) Does the model support platformization or boundary-setting structures that reduce horizontal
coordination load?

High O3 reflects an organization that scales effectively as centaur units multiply.
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O4: INTEGRATION OF AUTOMATED GOVERNANCE AND COMPLIANCE

Human–AI teaming requires continuous verification, policy enforcement, and risk management (Shnei-
derman, 2020; Schmutz, 2024). Organizational models built on manual, centralized approval processes
impede AI-accelerated iteration. We evaluate:

O4.1) Does the model encourage automation of governance (e.g., policy-as-code, automated compliance
checks)?

O4.2) Are risk and quality controls embedded within delivery units rather than externalized to committees
or gatekeepers?

O4.3) Does the model support continuous, non-blocking governance aligned with frequent releases?

High O4 indicates strong alignment with continuous, AI-compatible governance.

O5: ADAPTABILITY TO HIGH-FLUX, HIGH-ITERATION WORK

Centaur development increases the rate at which work evolves. Rigid planning cycles slow adaptation
(Ries, 2011; Forsgren, Humble, and Kim, 2018). We evaluate:

O5.1) Does the model support flexible or continuous planning rather than fixed quarterly or annual cycles?
O5.2) Can priorities be adjusted rapidly based on new information?
O5.3) Does the model reduce batching of decisions, approvals, and coordination events?

High O5 indicates strong compatibility with AI-accelerated iteration.

O6: ACCOMMODATION OF MICRO-UNITS AND VARIABLE TOPOLOGY

Classical management models assume multi-person teams (Schwaber and Sutherland, 2017; Mintzberg,
1979), but centaur development often operates at micro-unit scale (1–3 engineers). Modern modular
structures (Sanchez and Mahoney, 1996; Skelton and Pais, 2019) support variable boundaries. We
evaluate:

O6.1) Does the model recognize 1–3 person units as legitimate structural entities?
O6.2) Does it avoid mandating fixed team sizes or cross-functional compositions?
O6.3) Does the model support dynamic topologies—units merging, splitting, or embedding—without

structural penalty?

High O6 indicates strong structural fit with centaur micro-units.
Together, these six dimensions form a coherent, indicator-based model for evaluating organizational

structures under centaur development. They parallel the delivery framework dimensions (D1–D6) while
shifting the emphasis to authority distribution, boundary management, and governance integration
in AI-accelerated environments. Evaluation of Organizational Models (p. 25) applies this model to a
representative set of organizational structures.
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EVALUATION OF DELIVERY FRAMEWORKS

This section evaluates a representative set of delivery frameworks using the indicator-based scoring
model from Delivery Framework Evaluation Model (p. 8). All indicators are positively phrased, where a
score of 1 indicates alignment with centaur development and 0 indicates misalignment. Raw scores
Rk(F ) and ternary compatibility scores Tk(F ) are computed mechanically according to the rules defined
earlier.

Each subsection provides:

(i) a brief rationale,
(ii) a 0/1 indicator table with justification,
(iii) raw and ternary dimension scores.

SCRUM

Scrum (Schwaber and Sutherland, 2017) assumes synchronous coordination, distinct roles, and fixed-
length Sprints. These assumptions reflect a human-centric coordination model.

ID Val Rationale

D1.1 0 Scrum cannot operate without mandatory Sprint ceremonies.
D1.2 0 Coordination relies on events rather than asynchronous mecha-

nisms.
D1.3 0 Progress depends on scheduled meetings, not continuous flow.
D2.1 0 Roles (PO, SM, Developers) are mandatory and non-collapsible.
D2.2 0 Responsibilities are rigidly partitioned.
D2.3 0 A centaur unit cannot satisfy required multi-role structure.
D3.1 0 Re-planning cannot occur freely within Sprints.
D3.2 0 Iteration length is fixed.
D3.3 0 Sprint batch size is not tunable.
D4.1 0 Scrum does not prescribe CI/CD or automation.
D4.2 1 Potentially shippable increments allow automated inspection if

adopted.
D4.3 0 Governance relies on team events, not automated gates.
D5.1 0 Scrum is architecture-neutral; does not encourage emergent

design.
D5.2 1 Refactoring is common practice within Scrum teams.
D5.3 0 No structural focus on modularity.
D6.1 0 Scrum assumes manual, human execution.
D6.2 0 Automation is optional and external to the framework.
D6.3 0 AI-agent workflows conflict with ceremony-driven coordination.

INDICATOR TABLE.

SCORES.
R = {0, 0, 0, 1/3, 1/3, 0}, T = {0, 0, 0, 0.5, 0.5, 0}.
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EXTREME PROGRAMMING (XP)

XP (Beck, 1999) emphasizes technical excellence, automation, and continuous feedback. Some syn-
chronous practices limit full centaur alignment, but XP supports micro-iterations and verification
exceptionally well.

ID Val Rationale

D1.1 0 Pair programming is synchronous and central.
D1.2 1 XP’s coordination is primarily artifact-based (tests, CI), not

ceremony-driven.
D1.3 1 Work continues asynchronously without ceremony gates.
D2.1 1 Roles are flexible; developers share responsibilities.
D2.2 1 Capability-based, collective ownership.
D2.3 0 XP assumes at least small multi-person teams; a single centaur

unit cannot fully enact pair programming.
D3.1 1 Continuous re-planning and test-first iterations.
D3.2 1 Micro-iterations are intrinsic.
D3.3 1 Batch sizes are minimal and tunable.
D4.1 1 TDD mandates automated tests.
D4.2 1 CI and continuous feedback are core.
D4.3 1 Governance emerges from automated tests and pipelines.
D5.1 1 Emergent architecture is explicitly encouraged.
D5.2 1 Continuous refactoring is central.
D5.3 1 Simple design promotes modularity.
D6.1 0 XP predates AI and assumes human execution.
D6.2 1 Strong tooling/automation culture.
D6.3 0 Some practices (pair programming) assume human participa-

tion.

INDICATOR TABLE.

SCORES.
R = {2/3, 2/3, 1, 1, 1, 1/3}, T = {0.5, 1, 1, 1, 1, 0.5}.
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KANBAN

Kanban (Anderson, 2010) is lightweight, asynchronous, and oriented toward continuous flow. Lack of
prescriptive structure makes it flexible but leaves governance and architecture external.

ID Val Rationale

D1.1 1 No mandatory ceremonies.
D1.2 1 Coordination is visual and asynchronous.
D1.3 1 Work flows continuously without scheduled gates.
D2.1 1 No required roles; highly flexible.
D2.2 1 Responsibilities are capability-based.
D2.3 1 A single unit can operate Kanban independently.
D3.1 1 Continuous flow is intrinsic.
D3.2 1 Re-planning occurs at any time.
D3.3 1 Work item sizes are tunable.
D4.1 0 Automation is not defined in the method.
D4.2 1 Feedback loops can be embedded.
D4.3 0 Governance is not structurally embedded.
D5.1 0 Architecture is external to Kanban.
D5.2 1 Continuous refactoring is compatible.
D5.3 0 No explicit modularity support.
D6.1 1 Kanban is execution-agnostic.
D6.2 1 Automation integrates easily.
D6.3 1 Its coordination model still works if execution is automated.

INDICATOR TABLE.

SCORES.
R = {1, 1, 1, 1/3, 1/3, 1}, T = {1, 1, 1, 0.5, 0.5, 1}.
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LEAN STARTUP

Lean Startup (Ries, 2011) is conceptually among the closest matches to centaur development due to
high emphasis on experimentation, telemetry, and rapid feedback.

ID Val Rationale

D1.1 1 No required synchronous events.
D1.2 1 Coordination is artifact- and metric-based.
D1.3 1 Continuous iteration is natural.
D2.1 1 No prescribed roles.
D2.2 1 Responsibilities defined through capabilities.
D2.3 1 Fully operable by a centaur unit.
D3.1 1 Continuous iteration is core.
D3.2 1 Re-planning is continuous.
D3.3 1 Micro-iterations are encouraged.
D4.1 1 Emphasizes automated measurement and learning.
D4.2 1 Feedback loops define the method.
D4.3 1 Governance-by-metrics aligns with centaur workflows.
D5.1 1 Supports emergent architecture through experimentation.
D5.2 1 Encourages revisiting assumptions continuously.
D5.3 1 Prefers modular, adaptive systems.
D6.1 1 Execution mode is irrelevant.
D6.2 1 Automation enhances learning loops.
D6.3 1 Structure remains valid under AI execution.

INDICATOR TABLE.

SCORES.
R = {1, 1, 1, 1, 1, 1}, T = {1, 1, 1, 1, 1, 1}.
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DEVOPS / SRE

DevOps and SRE emphasize automation, continuous verification, and operational excellence (Forsgren,
Humble, and Kim, 2018; Humble, Molesky, and O’Reilly, 2015). They naturally align with centaur
workflows.

ID Val Rationale

D1.1 1 No mandatory ceremonies.
D1.2 1 Coordination through tooling, pipelines, and CI/CD.
D1.3 1 Continuous progress is the norm.
D2.1 1 Roles are flexible.
D2.2 1 Focus is on capabilities (dev + ops).
D2.3 1 A centaur unit can operate DevOps workflows.
D3.1 1 Continuous iteration is intrinsic.
D3.2 1 Re-planning happens continuously.
D3.3 1 Micro-iterations supported via automation.
D4.1 1 Automation central.
D4.2 1 CI/CD, monitoring, and metrics built-in.
D4.3 1 Governance integrated into pipelines.
D5.1 1 Encourages evolutionary architecture.
D5.2 1 Emphasizes loosely coupled systems.
D5.3 1 Supports modularity.
D6.1 1 Fully execution-agnostic.
D6.2 1 AI agents can easily integrate.
D6.3 1 Coordination remains coherent under automation.

INDICATOR TABLE.

SCORES.
R = {1, 1, 1, 1, 1, 1}, T = {1, 1, 1, 1, 1, 1}.
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SAFE

SAFe (Scaled Agile Inc., 2021) is heavy on roles, ceremonies, and centralized governance. It is the least
compatible scaled framework.

ID Val Rationale

D1.1 0 Mandatory PI Planning and ART events.
D1.2 0 Heavy synchronous coordination.
D1.3 0 Cannot operate continuously without ceremonies.
D2.1 0 Extensive role hierarchy.
D2.2 0 Strict responsibility separation.
D2.3 0 Centaur unit cannot fulfill role architecture.
D3.1 0 Fixed PI cadence.
D3.2 0 Re-planning is gated.
D3.3 0 Batch size inflexible.
D4.1 0 Governance is manual/stage-gated.
D4.2 0 Automated feedback optional, not structural.
D4.3 0 Governance boards act as gates.
D5.1 1 Architectural guidance exists.
D5.2 0 Refactoring constrained by planning.
D5.3 0 Architecture evolves slowly.
D6.1 0 Assumes human-centric execution.
D6.2 0 Automation is add-on.
D6.3 0 Agentic workflows conflict with structure.

INDICATOR TABLE.

SCORES.
R = {0, 0, 0, 0, 1/3, 0}, T = {0, 0, 0, 0, 0.5, 0}.
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LESS

LeSS (Larman and Vodde, 2017) reduces hierarchical elements but retains synchronous coordination
and Sprint cadences.

ID Val Rationale

D1.1 0 Sprint events required.
D1.2 0 Coordination is synchronous.
D1.3 1 Some continuous flow allowed between Sprints.
D2.1 1 Fewer roles than SAFe.
D2.2 0 Some role rigidity persists.
D2.3 0 Centaur unit cannot meet role expectations.
D3.1 0 Sprint cadence fixed.
D3.2 1 Re-planning possible between Sprints.
D3.3 0 Batch size tied to Sprint length.
D4.1 0 Automation not defined structurally.
D4.2 1 Feedback loops possible.
D4.3 0 Governance not embedded.
D5.1 1 Encourages emergent architecture.
D5.2 1 Refactoring supported.
D5.3 1 Modular design encouraged.
D6.1 0 Human-centric execution assumed.
D6.2 0 Automation externalized.
D6.3 0 Agentic workflows not supported.

INDICATOR TABLE.

SCORES.
R = {1/3, 1/3, 1/3, 1/3, 1, 0}, T = {0.5, 0.5, 0.5, 0.5, 1, 0}.
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WATERFALL / V-MODEL

Plan-driven methods such as Waterfall and V-Model (Royce, 1970) assume sequential phases, upfront
architecture, formal handoffs, and manual governance. These assumptions conflict with centaur-style
rapid iteration and automation.

ID Val Rationale

D1.1 0 Waterfall depends on milestone reviews and formal meetings.
D1.2 0 Coordination is document- and meeting-driven, not asyn-

chronous.
D1.3 0 Progress halts at phase gates; continuous operation is impossible.
D2.1 0 Rigid role separation (analyst, designer, developer, tester).
D2.2 0 Responsibilities are strictly non-overlapping.
D2.3 0 Centaur micro-units cannot satisfy role partitioning.
D3.1 0 No re-planning between phases.
D3.2 0 Rapid iteration is not permitted structurally.
D3.3 0 Batch sizes (phases) are fixed and large.
D4.1 0 Governance is manual and stage-gated.
D4.2 0 Feedback loops occur only at phase boundaries.
D4.3 0 No support for automated quality gates.
D5.1 0 Assumes upfront architecture.
D5.2 0 Refactoring is discouraged or costly.
D5.3 0 No modularity assumptions; architecture is monolithic.
D6.1 0 Execution is fully human and sequential.
D6.2 0 Automation is not structurally recognized.
D6.3 0 Agentic workflows directly contradict the method.

INDICATOR TABLE.

SCORES.
R = {0, 0, 0, 0, 0, 0}, T = {0, 0, 0, 0, 0, 0}.
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PRINCE2

PRINCE2 (Office of Government Commerce, 2009) is a project governance methodology optimized for
predictability, control, and sequential stage boundaries. It is structurally incompatible with centaur-style
high-frequency iteration.

ID Val Rationale

D1.1 0 Mandatory stage boundary reviews and governance meetings.
D1.2 0 Coordination is synchronous and document-driven.
D1.3 0 Continuous flow is impossible under stage boundaries.
D2.1 0 Rigid role structure (Project Board, PM, Team Manager).
D2.2 0 Responsibilities are strictly partitioned.
D2.3 0 Centaur units cannot satisfy mandatory governance roles.
D3.1 0 Iteration does not exist; waterfall planning dominates.
D3.2 0 Re-planning only allowed at stage boundaries.
D3.3 0 Batch size (stage) fixed and large.
D4.1 0 Governance is manual and gate-based.
D4.2 0 Automated feedback loops not part of the method.
D4.3 0 Compliance enforced via reviews, not pipelines.
D5.1 0 Expects upfront architecture or design stage.
D5.2 0 Architecture evolution conflicts with sequential control.
D5.3 0 No emphasis on modularity or adaptability.
D6.1 0 Assumes sequential human execution.
D6.2 0 Not designed for automation or tooling integration.
D6.3 0 Agentic workflows break the governance model entirely.

INDICATOR TABLE.

SCORES.
R = {0, 0, 0, 0, 0, 0}, T = {0, 0, 0, 0, 0, 0}.
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OBAF

OBAF (Blomgren, 2025b) emphasizes outcome alignment, rapid experimentation, andminimal ceremony,
making it structurally compatible with centaur-style development. This evaluation treats OBAF neutrally–
as one example of a lightweight, outcome-oriented method.

ID Val Rationale

D1.1 1 No mandatory synchronous events.
D1.2 1 Coordination is artifact- and outcome-driven.
D1.3 1 Continuous progress is natural.
D2.1 1 No required roles; fully flexible.
D2.2 1 Responsibilities defined through outcomes and metrics.
D2.3 1 A single centaur unit can execute OBAF end-to-end.
D3.1 1 Designed for continuous iteration.
D3.2 1 Re-planning occurs in real time based on feedback.
D3.3 1 Small, frequent learning cycles encouraged.
D4.1 1 Strong integration of automated metrics and telemetry.
D4.2 1 Feedback loops are at the core.
D4.3 1 Governance designed around metric-based, automated align-

ment.
D5.1 1 Encourages evolutionary architecture.
D5.2 1 Refactoring and adaptation are routine.
D5.3 1 Supports modular and exploratory design.
D6.1 1 Execution-agnostic by design.
D6.2 1 Encourages automation and agentic workflows.
D6.3 1 Remains coherent even if execution is automated.

INDICATOR TABLE.

SCORES.
R = {1, 1, 1, 1, 1, 1}, T = {1, 1, 1, 1, 1, 1}.
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SUMMARY OF DELIVERY FRAMEWORK COMPATIBILITY SCORES

Table 3 consolidates the ternary compatibility scores Tk(F ) for all evaluated delivery frameworks across
the six dimensions D1–D6. These scores are not intended as rankings but as structured reflections of
how each framework’s coordination assumptions align with the centaur development characteristics
described in The Post-2025 Centaur Development Reality (p. 4) and Delivery Framework Evaluation
Model (p. 8). The values are derived mechanically from the binary indicators presented in the preceding
subsections, making the scoring transparent and reproducible.

High scores (1) indicate strong conceptual and structural compatibility with centaur workflows, par-
ticularly in areas such as asynchronous coordination, role flexibility, micro-iteration support, automated
verification, architectural adaptability, and AI-agent integration. Mid-level scores (0.5) reflect partial
compatibility or context-dependent alignment. Scores of 0 indicate structural misalignment with one or
more key coordination demands of centaur development.
The summary table allows direct comparison of frameworks across dimensions and provides a basis

for the analysis in later sections, including the evaluation of organizational models and the case in Case
Illustration (p. 39).

Table 3: Delivery Framework Compatibility Scores (D1–D6)

Framework D1 D2 D3 D4 D5 D6
Scrum 0 0 0 0.5 0.5 0
XP 0.5 1 1 1 1 0.5
Kanban 1 1 1 0.5 0.5 1
Lean Startup 1 1 1 1 1 1
DevOps/SRE 1 1 1 1 1 1
SAFe 0 0 0 0 0.5 0
LeSS 0.5 0.5 0.5 0.5 1 0
Waterfall/V-Model 0 0 0 0 0 0
PRINCE2 0 0 0 0 0 0
OBAF 1 1 1 1 1 1
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EVALUATION OF ORGANIZATIONAL MODELS

This section evaluates twelve organizational structures using the indicator-based scoringmodel developed
in Organizational Model Evaluation Model (p. 11). These structural forms represent widely adopted
models in contemporary organizations as well as influential alternatives proposed in organizational
theory. They vary significantly in their assumptions about decision rights, information flow, team
topology, governance, and coordination mechanisms. Such assumptions become critical to examine
under the centaur development paradigm, where a human–AI micro-unit can perform end-to-end work
with substantially reduced intra-unit coordination cost but where inter-unit alignment, governance, and
architectural coherence remain essential.
Each organizational model M is evaluated along the six dimensions O1–O6, covering autonomy,

decision decentralization, cross-boundary efficiency, governance integration, adaptability to high-flux
iteration, and support for micro-unit structures. Each dimension consists of three binary indicators
Ik,j(M), where 1 denotes alignment with centaur development and 0 denotes misalignment. Raw scores
are computed as:

Rk(M) =
1

3

3∑
j=1

Ik,j(M),

and mapped to the ternary compatibility scale:

Tk(M) =


0 if Rk(M) < 1

3 ,

0.5 if 1
3 ≤ Rk(M) < 2

3 ,

1 if Rk(M) ≥ 2
3 .

A high ternary score indicates that an organizational model provides the structural conditions—
autonomy, local decision authority, asynchronous coordination, embedded governance, and flexible
boundary management—required for centaur-style software delivery. A low score indicates structural
tension or misalignment with these coordination needs.
The following subsections evaluate each organizational model individually. The first model, the

Functional Hierarchy, represents the baseline against which more modern or decentralized structures
can be compared.
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FUNCTIONAL HIERARCHY

The functional hierarchy is a classical organizational form in which work is divided according to
professional specialization (e.g., frontend engineering, backend engineering, QA, product management,
operations). Although this design optimizes for efficiency and depth of expertise, it creates strong
dependencies across functions and relies heavily on synchronous coordination and managerial escalation.
Such properties make it structurally misaligned with the autonomy, local decision authority, and
asynchronous coordination patterns characteristic of centaur development.

ID Val Rationale

O1.1 0 Local teams cannot make routine decisions without escalation to functional managers.
O1.2 0 Managers often oversee large spans across specialized units, slowing vertical communication.
O1.3 0 Workflows and processes are standardized per function; units cannot autonomously adapt them.
O2.1 0 Architecture, prioritization, and technical decisions are centralized in management.
O2.2 0 PMOs or central committees frequently control tactical decision-making.
O2.3 0 Model does not support decentralized decision-making in high-uncertainty environments.
O3.1 0 Cross-functional dependencies require meetings, handoffs, and escalations.
O3.2 0 Interfaces between functions rely on synchronous communication rather than artifacts.
O3.3 0 No structural support for modular or contract-based alignment.
O4.1 0 Governance is manual and committee-driven.
O4.2 0 Quality, security, and risk checks are handled by specialized functions, not within teams.
O4.3 0 Continuous or automated governance is not structurally enabled.
O5.1 0 Planning cycles are long (quarterly or annual).
O5.2 0 Priority changes require negotiation across functions, slowing responsiveness.
O5.3 0 Decision batching is inherent to functional planning.
O6.1 0 Structure assumes multi-person teams, not micro-units.
O6.2 0 Team size and roles are predetermined by function.
O6.3 0 Merging or splitting micro-units is structurally impossible.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {0, 0, 0, 0, 0, 0}, T = {0, 0, 0, 0, 0, 0}.

The functional hierarchy shows complete misalignment with centaur development. Its reliance on
specialization, centralization, synchronous communication, and slow planning cycles conflicts with the
autonomy, modularity, and rapid iteration characteristics of human–AI micro-units.
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DIVISIONAL (M-FORM) ORGANIZATION

The divisional or multidivisional (M-form) organization structures the company into semi-autonomous
business units organized around product lines, geographic markets, or customer segments. Each division
typically maintains internal functional departments (e.g., engineering, marketing, finance) and reports
to a central corporate headquarters that sets strategic direction and allocates resources. While M-form
structures increase accountability and local ownership relative to a pure functional hierarchy, they still
rely heavily on centralized governance, multi-layered decision processes, and synchronous alignment
mechanisms. These properties limit compatibility with centaur-style micro-unit execution, where
autonomy, rapid iteration, and lightweight cross-boundary coordination are essential.

ID Val Rationale

O1.1 0 Divisions retain approval chains for routine decisions; autonomy is limited by divisional leadership.
O1.2 0 Multiple managerial layers within each division constrain rapid vertical communication.
O1.3 0 Teams within divisions must follow standardized divisional operating models and cannot freely

adapt workflows.
O2.1 0 Key decisions (architecture, prioritization, investment) are owned by divisional management, not

delivery units.
O2.2 0 Divisions rely on central corporate functions (finance, strategy, architecture) for major decisions.
O2.3 0 The model is built around hierarchical decision-making and does not encourage local autonomy in

uncertainty.
O3.1 0 Cross-division coordination requires steering groups or escalation pathways.
O3.2 0 Dependencies are managed via synchronous communication, budgets, and centralized processes.
O3.3 0 Divisional structures rarely implement modular, contract-based interaction surfaces.
O4.1 0 Governance is centralized and manual, driven by corporate review cycles.
O4.2 0 Risk and compliance functions are external to delivery units and impose oversight.
O4.3 0 Automated or continuous governance mechanisms are uncommon in M-form structures.
O5.1 0 Planning cycles are quarterly or annual, aligned with corporate budgeting.
O5.2 0 Priorities cannot shift rapidly; reprioritization must propagate through divisional layers.
O5.3 0 Strategic and operational decisions are batched at division- or portfolio-level cycles.
O6.1 0 Divisions assume teams of substantial size; micro-units are neither recognized nor supported.
O6.2 0 Team size and composition is strongly determined by divisional functional departments.
O6.3 0 Divisions are static and do not support dynamic merging or splitting of units.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {0, 0, 0, 0, 0, 0}, T = {0, 0, 0, 0, 0, 0}.

Like the functional hierarchy, the divisional M-form organization is deeply misaligned with centaur
development. Its hierarchical authority gradients, synchronous cross-boundary coordination, centralized
governance, and reliance on multi-person functional teams inhibit the autonomy, rapid iteration, and
modular interaction patterns that centaur micro-units require.
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MATRIX ORGANIZATION

The matrix organization overlays two orthogonal structures—typically functional departments and
cross-functional project or product groupings. Employees report to both a functional manager (who
controls professional standards, resourcing, and career progression) and a project/product manager
(who directs day-to-day work priorities). While the matrix was historically intended to improve cross-
functional collaboration and resource flexibility, it is widely recognized as a coordination-heavy structure
that imposes high cognitive load, dual authority conflicts, and frequent alignment meetings. These
characteristics run counter to the autonomy, clarity of ownership, and rapid iteration cadence required
by centaur development.

ID Val Rationale

O1.1 0 Matrix organizations require approvals from both functional and project managers; local autonomy
is severely limited.

O1.2 0 Dual reporting increases managerial layers and slows vertical communication.
O1.3 0 Teams cannot autonomously alter workflows because functional and project structures impose

conflicting constraints.
O2.1 0 Key decisions frequently require consensus between two authority lines, impeding decentralization.
O2.2 0 PMOs, portfolio boards, and functional committees mediate most tactical decisions.
O2.3 0 The model is explicitly designed around shared authority rather than local decision rights in dynamic

contexts.
O3.1 0 Cross-boundary alignment occurs through extensive meetings involving multiple managers.
O3.2 0 Dependencies are handled via synchronous negotiation rather than artifact-centric coordination.
O3.3 0 Matrix structures do not naturally enforce modular boundaries; instead, they create overlapping

responsibilities.
O4.1 0 Governance relies on functional reviews and project steering groups, not automation.
O4.2 0 Risk and quality functions are external and typically centralized within functional units.
O4.3 0 Continuous or embedded governance is structurally unsupported due to multiple supervisory layers.
O5.1 0 Planning cycles follow functional and project rhythms (usually quarterly or annual).
O5.2 0 Priorities cannot shift rapidly because changes must be negotiated across authority lines.
O5.3 0 Decision batching is intrinsic to matrix planning and resource allocation.
O6.1 0 Matrix structures assume medium-to-large project teams; they do not support micro-units.
O6.2 0 Team composition is determined jointly by functional managers and project leadership, eliminating

size flexibility.
O6.3 0 Dynamic reconfiguration (merge/split) is constrained by dual reporting requirements.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {0, 0, 0, 0, 0, 0}, T = {0, 0, 0, 0, 0, 0}.

The matrix organization scores a complete zero across all centaur-relevant dimensions. Dual authority
structures, synchronous coordination, centralized governance, and rigidity of team composition make
matrix organizations among the least compatible structures with centaur-based delivery. Coordination
theory consistently identifies the matrix as one of the highest-overhead organizational forms, and
centaur development amplifies these structural limitations.
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CROSS-FUNCTIONAL PRODUCT TEAMS

Cross-functional product teams—popularized through Agile and Lean practices—are designed to bring
all skills required for delivering customer value into a single, stable unit. These teams typically own
a product or capability end-to-end, with responsibility spanning design, development, testing, and
operations. While they represent a major improvement over functional or matrix structures, they
still assume multi-person teams, synchronous rituals, and shared human decision-making. These
assumptions align partially, but not fully, with the centaur development model, where a single senior
engineer augmented by AI agents can often perform the work of an entire cross-functional team.

ID Val Rationale

O1.1 1 Teams typically have local authority over routine product and technical decisions.
O1.2 1 Flat team structures reduce hierarchical layers, enabling relatively fast communication.
O1.3 1 Teams often adapt their own ways of working (e.g., choosing Kanban or Scrum variants).
O2.1 1 Most decisions relevant to the product are made within the team; decision authority is localized.
O2.2 1 Cross-team or centralized governance typically handles portfolio-level issues, not day-to-day work.
O2.3 1 Agile product teams explicitly support decentralized decision-making.
O3.1 0 Cross-team dependencies still require coordination meetings, not modular interfaces.
O3.2 0 Artifacts (APIs, SLAs) vary widely; alignment often relies on human negotiation.
O3.3 0 Most organizations do not structure cross-team work using formal modularity or contract-based

structures.
O4.1 0 Governance is usually manual (reviews, approvals) unless paired with DevOps–which is external to

the team model.
O4.2 1 Teams often handle quality and risk controls internally (tests, reviews, acceptance criteria).
O4.3 0 Continuous automated governance is not an inherent structural property of the model.
O5.1 1 Teams typically follow flexible planning cadences (2–4 week cycles or continuous flow).
O5.2 1 Priorities can shift quickly through backlog management or product owner decisions.
O5.3 1 Little batching is mandatory within the team; iteration frequency is high.
O6.1 0 Model assumes teams of 5–9 people; micro-units are not supported as a structural form.
O6.2 0 Roles and team size expectations make 1–3 person teams non-standard.
O6.3 0 Teams are expected to be stable and long-lived; dynamic merging or splitting is discouraged.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 1, 0, 1/3, 1, 0} ⇒ T = {1, 1, 0, 0.5, 1, 0}.

Cross-functional product teams align strongly with centaur needs in autonomy (O1), decentralization
(O2), and iteration speed (O5). However, they remain limited in three areas: cross-boundary modularity
(O3), automated governance (O4), and especially micro-unit accommodation (O6). While these teams
represent a significant improvement over functional or matrix structures, they are still anchored in the
assumption that value is created by stable human teams rather than by human–AI micro-units.
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TEAM TOPOLOGIES

Team Topologies (Skelton and Pais, 2019) proposes four fundamental team types (stream-aligned,
enabling, complicated-subsystem, and platform teams) and three interaction modes (collaboration,
X-as-a-Service, and facilitation). The model emphasizes reducing cognitive load, establishing clear
ownership boundaries, promoting fast flow, and encouraging well-defined interaction surfaces across
teams. These properties align well with the coordination demands of centaur development, especially
in cross-boundary alignment (O3) and governance integration (O4). However, the model still assumes
multi-person teams (rather than micro-units), which limits its alignment with O6.

ID Val Rationale

O1.1 1 Stream-aligned teams have authority over most day-to-day decisions within their domain.
O1.2 1 Team Topologies minimizes hierarchical layers and emphasizes clear team ownership.
O1.3 1 Teams are expected to evolve their own internal processes based on their cognitive load and workflow

needs.
O2.1 1 Decision-making is intentionally pushed to the team boundaries; teams own their capabilities.
O2.2 1 Centralized oversight is minimized; platform and enabling teams support autonomy rather than

control it.
O2.3 1 The model is explicitly designed for rapid decision-making in dynamic environments.
O3.1 1 Team boundaries are defined via service APIs, contracts, and platform interfaces, reducing coordi-

nation load.
O3.2 1 Interactions are formalized through X-as-a-Service or asynchronous collaboration modes.
O3.3 1 The model explicitly promotes modular, contract-driven interaction surfaces.
O4.1 1 Automation and platform capabilities are integral; governance can be embedded in service APIs.
O4.2 1 Risk and quality responsibilities are pushed into team workflows through strong ownership bound-

aries.
O4.3 1 Platform teams enable continuous, automated governance mechanisms across stream-aligned teams.
O5.1 1 The model supports continuous delivery and rapid evolution via reduced cognitive load.
O5.2 1 Teams are designed to adapt rapidly; flow metrics guide reprioritization.
O5.3 1 Decision batching is minimized through autonomous, stream-aligned ownership.
O6.1 0 Teams are explicitly assumed to be multi-person, often 5–9 people.
O6.2 0 Micro-unit configurations are not recognized as a core topology, though they are not forbidden.
O6.3 0 The model presumes relatively stable team boundaries; frequent splitting/merging is discouraged.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 1, 1, 1, 1, 0} ⇒ T = {1, 1, 1, 1, 1, 0}.

Team Topologies demonstrates one of the strongest alignments with centaur development among
contemporary organizational models. It provides clear boundaries, strong local autonomy, modular
interaction surfaces, and support for continuous delivery and automated governance. Its only major
limitation is that it structurally assumes multi-person human teams; the topology does not natively
support micro-unit (1–3 person) entities, which limits compatibility with centaur-style organizational
decomposition.
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SPOTIFY MODEL

The Spotify Model popularized the concepts of squads, tribes, chapters, and guilds as a way to scale
Agile practices. Squads operate as semi-autonomous cross-functional teams; tribes group squads
for alignment; chapters provide functional cohesion; and guilds offer voluntary knowledge-sharing
communities. Although widely referenced, the Spotify Model is less a formal organizational framework
and more an emergent pattern described through case studies. Nonetheless, it remains influential and
represents a hybrid of autonomous product teams with overlaying communities of practice. Its reliance
on multi-person squads and synchronous rituals limits compatibility with centaur micro-units, while its
emphasis on autonomy and alignment structures produces moderate alignment on several dimensions.

ID Val Rationale

O1.1 1 Squads have substantial authority over local product and technical decisions.
O1.2 1 Squads operate within relatively flat structures at the tribe level.
O1.3 1 Squads may choose their own work practices (Scrum, Kanban, XP variants).
O2.1 1 Most day-to-day decisions are localized within squads.
O2.2 0 Chapter leads and tribe leadership impose some centralized influence on priorities and standards.
O2.3 1 The model supports decentralized decision-making under uncertainty through autonomous squads.
O3.1 0 Cross-squad alignment commonly occurs through ceremonies, chapter meetings, and synchronous

coordination.
O3.2 0 Interaction patterns rely on interpersonal collaboration more than contract-driven modularity.
O3.3 0 Model does not prescribe explicit cross-team interface contracts or platform boundaries.
O4.1 0 Governance is largely manual and role-driven (tribe leads, chapter leads).
O4.2 1 Squads typically own quality signals and internal risk management.
O4.3 0 Automated or continuous governance is not structurally inherent.
O5.1 1 The model supports rapid delivery through squad autonomy.
O5.2 1 Prioritization can shift quickly within squads.
O5.3 1 Little batching is forced at the squad level; squads iterate continuously.
O6.1 0 The model assumes squads of 6–12 people; micro-units are not recognized.
O6.2 0 Team size expectations and roles prevent 1–3 person units.
O6.3 0 The structural model assumes stable squads; dynamic merging/splitting is not part of the design.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 2/3, 0, 1/3, 1, 0}, T = {1, 1, 0, 0.5, 1, 0}.

The Spotify Model shows strong alignment with centaur needs in autonomy (O1), local decision-
making (O2), and high-frequency iteration (O5). However, its cross-team coordination practices are
largely synchronous and interpersonal (O3), governance is manual rather than automated (O4), and the
model strongly assumes multi-person squads instead of micro-units (O6). As a result, it offers partial
compatibility overall, with several dimensions that misalign with the coordination characteristics of
centaur development.
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PLATFORM ORGANIZATION

A platform organization structures work around a set of platform teams that provide reusable services,
infrastructure, and capabilities to product or stream-aligned teams. Platform teams reduce cognitive load
by enabling other teams to consume capabilities via self-service APIs, tools, or automated workflows.
This structure increasingly appears in large-scale technology firms and aligns closely with modular
architectures, automated governance, and cross-boundary efficiency–all relevant to centaur development.
The primary limitation is that both platform and consuming teams are still assumed to be multi-person
human teams rather than micro-units.

ID Val Rationale

O1.1 1 Product teams and platform teams have significant autonomy over local decisions.
O1.2 1 Hierarchy is relatively flat; platform teams support, not control, stream-aligned teams.
O1.3 1 Teams can choose workflows as long as they conform to platform interfaces.
O2.1 1 Decision rights for product direction and technical evolution are pushed into the stream-aligned

teams.
O2.2 1 Platform teams operate as service providers; central decision-making is limited.
O2.3 1 The model explicitly supports decentralized decision-making under uncertainty.
O3.1 1 Platform interfaces (APIs, self-service tooling) serve as modular boundaries across units.
O3.2 1 Dependencies are handled through contract-based, asynchronous interactions.
O3.3 1 Platformization reduces synchronous cross-team coordination dramatically.
O4.1 1 Governance can be embedded into platform services (policy-as-code, automated guardrails).
O4.2 1 Risk and quality signals are often built directly into platform capabilities.
O4.3 1 Continuous, automated governance emerges naturally from platform interfaces.
O5.1 1 Product teams iterate independently; platforms minimize bottlenecks.
O5.2 1 Priorities can shift rapidly without requiring cross-team negotiation.
O5.3 1 Batching is reduced by self-service models.
O6.1 0 Teams are assumed to be multi-person; micro-units are not explicitly supported.
O6.2 0 Platform/stream team designs assume stable team structures rather than 1–3 person units.
O6.3 0 Dynamic merging/splitting at the micro-unit scale is not a design principle.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 1, 1, 1, 1, 0}, T = {1, 1, 1, 1, 1, 0}.

The platform organization demonstrates *very strong alignment* with centaur development across
autonomy, decentralization, modularity, governance, and iteration speed. Its primary limitation is the
assumption of multi-person human teams rather than centaur-scale micro-units. Nevertheless, few
organizational models score as highly across the core coordination dimensions relevant to human–AI
unit work.
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SOCIOCRACY 3.0 (S3.0)

Sociocracy 3.0 (S3.0) is a collection of patterns for self-governance, decision making, and organizational
design. It extends classical sociocracy with Lean and Agile ideas, emphasizing equivalence in decision-
making, distributed authority, and dynamic role formation. S3.0 promotes autonomy and decentralized
governance, making it partially compatible with centaur development; however, its reliance on consent-
based group decision processes and circle structures assumes multi-person human groups rather than
micro-units. Several coordination mechanisms remain inherently synchronous and human-centric,
limiting fit with agentic workflows.

ID Val Rationale

O1.1 1 Circles (teams) have strong local authority to make decisions within their domain.
O1.2 1 Hierarchical layering is minimized; authority is distributed through linked circles.
O1.3 1 Circles can adapt their internal processes, roles, and domain responsibilities autonomously.
O2.1 1 Decision-making is intentionally delegated to the most local circle with sufficient context.
O2.2 1 There is minimal reliance on centralized PMOs or committees; governance is distributed.
O2.3 1 The consent principle supports decentralized, context-driven decision-making under uncertainty.
O3.1 0 Cross-circle coordination relies heavily on link roles and consent-based meetings, not modular

boundaries.
O3.2 0 Dependencies require synchronous participation (double-linking, inter-circle meetings).
O3.3 0 S3.0 does not promote platformization or contract-driven alignment across groups.
O4.1 0 Governance processes are meeting-heavy and primarily human-centric.
O4.2 1 Quality and risk are often handled within circles through distributed roles and responsibilities.
O4.3 0 Continuous automated governance is not structurally part of S3.0.
O5.1 1 Circles can adapt their planning cadence as needed; planning is lightweight.
O5.2 1 Priorities can shift quickly through local consent processes.
O5.3 1 Decisions are not batched; changes occur as needed.
O6.1 0 S3.0 assumes circles of multiple humans participating in consent decision-making; micro-units are

not modeled.
O6.2 0 Role distribution and linking mechanisms assume multi-person teams.
O6.3 0 Circle structures are stable; dynamic merging or splitting of 1–3 person units is not a core design

principle.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 1, 0, 1/3, 1, 0}, T = {1, 1, 0, 0.5, 1, 0}.

Sociocracy 3.0 demonstrates strong alignment with centaur needs in autonomy (O1), decentralization
(O2), and adaptability to high iteration cadence (O5). However, it is weakened by meeting-centric
cross-boundary coordination (O3), manual governance structures (O4), and an explicit dependence on
multi-person human circles (O6). As a result, S3.0 provides only a partial match to the coordination
patterns required by human–AI micro-units.
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HOLACRACY

Holacracy is a formalized self-management system introduced by Robertson. It distributes authority
through explicitly defined roles, circles, and structured governance processes. While Holacracy aggres-
sively decentralizes decision-making and provides high local autonomy, its coordination mechanisms
rely on highly prescriptive, synchronous governance rituals (tactical meetings, governance meetings, in-
tegrative decision-making). These human-centric processes impose significant communication overhead
and are structurally incompatible with the asynchronous, high-frequency iteration patterns of centaur
micro-units.

ID Val Rationale

O1.1 1 Roles and circles have substantial autonomy to act within their domains.
O1.2 1 Hierarchy is intentionally minimized; authority is distributed to roles rather than managers.
O1.3 1 Circles can adapt local processes and governance rules within the Holacracy constitution.
O2.1 1 Decision-making authority is decentralized to circle-level roles.
O2.2 1 Centralized oversight is minimal; governance flows outward, not upward.
O2.3 1 Holacracy’s structure is explicitly designed for decentralized action under uncertainty.
O3.1 0 Cross-circle alignment requires structured governance meetings with mandatory synchronous par-

ticipation.
O3.2 0 Dependencies are handled through integrative decision-making rather than contract-based bound-

aries.
O3.3 0 Holacracy does not emphasize modular interfaces between circles; alignment is interpersonal.
O4.1 0 Governance is entirely meeting-based and manual.
O4.2 1 Quality and risk management can be embedded locally within roles.
O4.3 0 Continuous automated governance is absent from the structural model.
O5.1 1 Roles can adapt and evolve quickly through governance processes.
O5.2 1 Priorities can shift dynamically because roles change based on current tensions.
O5.3 1 Decisions are processed iteratively in governance cycles rather than batched.
O6.1 0 Holacracy assumes circles consisting of multiple human roles; micro-units are not modeled.
O6.2 0 Team size flexibility is low due to the rule-bound nature of governance meetings.
O6.3 0 Circles are not designed for rapid splitting/merging of 1–3 person entities.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 1, 0, 1/3, 1, 0}, T = {1, 1, 0, 0.5, 1, 0}.

Holacracy provides strong alignment with centaur development in autonomy (O1), decentralization
(O2), and fast iteration (O5). However, the model is highly meeting-centric and depends on synchronous,
human-only interaction patterns for cross-boundary alignment and governance (O3, O4). It also lacks
support for micro-unit structures (O6). These factors make Holacracy partially compatible but structurally
limited under a centaur paradigm.
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TEAL ORGANIZATIONS

Teal organizations, as described by Laloux, emphasize three core principles: self-management, evolu-
tionary purpose, and wholeness. They reject traditional hierarchy entirely in favor of decentralized
authority and fluid role formation. Teams are self-organizing, individuals hold multiple dynamic roles,
and decision making follows an “advice process” rather than formal governance bodies. This creates
extremely high autonomy and decentralization—features that align well with centaur development.
However, Teal organizations often rely heavily on interpersonal, synchronous consultation and do not
provide strong structural support for modular interaction surfaces, automated governance, or micro-unit
organization. As a result, alignment is mixed.

ID Val Rationale

O1.1 1 Authority is radically decentralized; individuals and teams self-managewithout hierarchical approval.
O1.2 1 There are no managerial layers; communication channels are inherently flat.
O1.3 1 Units can freely adjust local processes and self-organize structures.
O2.1 1 Decisions are made where information resides via the “advice process.”
O2.2 1 There are no PMOs or centralized decision committees; governance is distributed.
O2.3 1 Self-management explicitly supports decentralized decision-making under uncertainty.
O3.1 0 Cross-team alignment relies heavily on interpersonal advice-seeking, not modular boundaries or

APIs.
O3.2 0 Dependencies require consultations, which are synchronous and human-dependent.
O3.3 0 Teal organizations do not prescribe contract-based or platform-style interfaces.
O4.1 0 Governance is human-driven (advice, consent) and not automated.
O4.2 1 Teams handle risk and quality locally through self-management principles.
O4.3 0 Continuous automated governance is not part of Teal organizational design.
O5.1 1 Planning is fluid and continuous; units respond quickly to new information.
O5.2 1 Priorities shift rapidly because authority is localized and contextual.
O5.3 1 No batching is imposed; decisions can be made immediately via advice process.
O6.1 0 Micro-units are not a structural concept; work assumes multiple humans in fluid roles.
O6.2 0 There is no support for 1–3 person formal units; Teal roles are fluid but not micro-team based.
O6.3 0 Structural stability is assumed; splitting/merging micro-units is not modeled.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 1, 0, 1/3, 1, 0}, T = {1, 1, 0, 0.5, 1, 0}.

Teal organizations align very well with centaur development in autonomy (O1), decentralization (O2),
and rapid iteration (O5). However, they misalign with the requirements for minimal cross-boundary
coordination (O3), automated governance (O4), and the centaur-compatible concept of micro-units
(O6). In practice, Teal structures depend heavily on human-centric synchronization mechanisms and
lack the modularity and governance automation needed for large-scale centaur ecosystems.
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RENDANHEYI (HAIER MICRO-ENTERPRISE MODEL)

Rendanheyi, developed within the Haier Group, is one of the most thoroughly documented micro-
enterprise organizational models in practice. The structure breaks the organization into hundreds
or thousands of autonomous micro-units (often 1–10 people), each with its own P&L accountability,
decision rights, and direct customer or internal-market relationships. Coordination occurs through
contract-like interfaces (platform and service marketplaces) rather than hierarchical control. Governance
and alignment mechanisms are embedded in platforms, performance contracts, and transparent market
interactions. This makes Rendanheyi uniquely aligned with centaur development, which assumes
autonomous micro-units, decentralized decision rights, modular boundaries, and automated governance
through platform interface layers.

ID Val Rationale

O1.1 1 Micro-enterprises possess full local authority for routine business and technical decisions.
O1.2 1 Hierarchical layers are minimized; platform units support autonomy rather than control it.
O1.3 1 Micro-enterprises choose their own workflows, processes, and business models.
O2.1 1 Decision-making occurs at the micro-enterprise level based on direct customer feedback.
O2.2 1 There is no central PMO or hierarchical committee controlling tactical decisions.
O2.3 1 The structure explicitly supports decentralized decision-making under uncertainty via internal

markets.
O3.1 1 Coordination across units happens through platform contracts and marketplace mechanisms, not

meetings.
O3.2 1 Dependencies are managed asynchronously via service interfaces (internal market transactions).
O3.3 1 Modularity is inherent: micro-enterprises interact through formalized service relationships.
O4.1 1 Governance is embedded in platform systems (contracts, performance tracking, transparent metrics).
O4.2 1 Risk and quality responsibilities are decentralized to each micro-enterprise.
O4.3 1 Continuous governance is enabled by platform-mediated monitoring and contracts.
O5.1 1 Micro-enterprises operate with continuous, real-time responsiveness to customer or internal-market

signals.
O5.2 1 Priorities shift rapidly based on direct demand signals; no batch planning required.
O5.3 1 No structural batching; micro-enterprises iterate continuously.
O6.1 1 Micro-enterprises can be as small as 1–3 people, matching centaur micro-unit structure.
O6.2 1 Team sizes are flexible; micro-units form and dissolve based on market needs.
O6.3 1 Dynamic splitting/merging is part of the design; units evolve based on performance and market

interactions.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 1, 1, 1, 1, 1}, T = {1, 1, 1, 1, 1, 1}.

Rendanheyi demonstrates the highest possible alignment with centaur development. It is the only
widely deployed organizational structure that explicitly supports autonomous micro-units, decentralized
authority, modular service interactions, automated governance through platform interfaces, continuous
iteration, and dynamic recomposition of teams. As such, it provides a real-world analogue to how
centaur-based organizations may evolve at scale.
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NETWORKED / CELLULAR ORGANIZATIONS

Networked or cellular organizations structure work into small, semi-autonomous cells that operate
with high internal cohesion and minimal hierarchy. Each cell is responsible for a coherent value stream
or capability, and cells interact with each other through lightweight coordination mechanisms. While
models vary (e.g., cellular manufacturing, networked firms, fractal organizations), the general principle
is to organize the company as a distributed network of autonomous units connected through shared
purpose, relationships, or contracts. This structure aligns well with centaur development because it
naturally supports micro-unit autonomy, decentralized decision-making, and adaptive reconfiguration.
However, implementations vary significantly, and some versions still rely on human-centric alignment
rituals or lack strong platform-mediated governance.

ID Val Rationale

O1.1 1 Cells have strong local authority over domain-specific decisions.
O1.2 1 Hierarchical layering is minimal; cells communicate directly as peers.
O1.3 1 Cells choose their own workflows, tooling, and operational models.
O2.1 1 Decision rights are embedded in each cell; decisions are made close to the work.
O2.2 1 There is typically no central PMO; coordination is distributed across cells.
O2.3 1 Cells adapt autonomously to uncertainty, consistent with decentralized decision-making theory.
O3.1 1 Cells often coordinate through contract-like agreements or loosely coupled interaction standards.
O3.2 1 Dependencies can be handled asynchronously through defined interfaces or negotiated relationships.
O3.3 1 Networked structures emphasize modularity and weak coupling between units.
O4.1 0 Automated governance is not guaranteed; implementations vary widely.
O4.2 1 Cells typically embed quality and risk controls locally.
O4.3 0 Many networked organizations rely on human-driven trust and relationships rather than automated

policies.
O5.1 1 Cells adapt continually based on local signals or shared system needs.
O5.2 1 Priorities shift rapidly within each cell without requiring cross-unit planning cycles.
O5.3 1 Minimal batching: decisions occur immediately within each unit.
O6.1 1 Cells can be very small (2–5 people), and micro-unit variations exist in several implementations.
O6.2 1 Team size and structure are flexible; many implementations allow 1–3 person cells.
O6.3 1 Cells may split or recombine dynamically as workloads or capabilities evolve.

INDICATOR TABLE WITH RATIONALES.

SCORES.
R = {1, 1, 1, 2/3, 1, 1}, T = {1, 1, 1, 0.5, 1, 1}.

Networked or cellular organizations exhibit very strong structural compatibility with centaur develop-
ment. They support local autonomy, decentralized decision- making, modular interactions, high iteration
speed, and flexible recomposition of units. The only partial limitation is governance (O4), which varies
significantly across implementations and is often human-driven rather than platform-automated. Despite
this, the structure remains one of the closest matches to the coordination and autonomy requirements
of human–AI micro-unit work.
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SUMMARY OF ORGANIZATIONAL MODEL COMPATIBILITY SCORES

Table 4 consolidates the ternary compatibility scores for all twelve organizational models across the six
centaur-relevant dimensions (O1–O6). Each score is derived mechanically from the indicator values
presented in the preceding subsections, ensuring that the results are transparent and reproducible. The
table highlights substantial variation in how different organizational structures distribute authority,
manage cross-boundary coordination, integrate governance, adapt to high-frequency iteration, and
accommodate micro-unit topologies.

High scores (1) indicate strong compatibility with centaur development–namely organizational condi-
tions that support autonomy, local decision-making, asynchronous coordination, embedded governance,
rapid iteration, and flexible team topology. Mid-range scores (0.5) represent partial or context-dependent
alignment. Low scores (0) denote structural misalignment rooted in hierarchical control, human-centric
interaction mechanisms, synchronous coordination, or fixed assumptions about team size.

Table 4: Organizational Model Compatibility Scores (O1–O6)

Organizational Model O1 O2 O3 O4 O5 O6
Functional Hierarchy 0 0 0 0 0 0
Divisional (M-Form) 0 0 0 0 0 0
Matrix Organization 0 0 0 0 0 0
Cross-Functional Product Teams 1 1 0 0.5 1 0
Team Topologies 1 1 1 1 1 0
Spotify Model 1 1 0 0.5 1 0
Platform Organization 1 1 1 1 1 0
Sociocracy 3.0 1 1 0 0.5 1 0
Holacracy 1 1 0 0.5 1 0
Teal Organizations 1 1 0 0.5 1 0
Rendanheyi (Micro-Enterprise) 1 1 1 1 1 1
Networked / Cellular Organizations 1 1 1 0.5 1 1

ANALYSIS. The results reveal a clear structural divide between traditional hierarchical organizations
and more modern or modular forms. Functional, divisional, and matrix structures exhibit complete
misalignment across all dimensions, reflecting their dependence on centralized authority, synchronous
communication, layered approval processes, and large multi-role teams. Contemporary cross-functional
product teams offer substantial improvements in autonomy (O1), decentralization (O2), and iteration
adaptability (O5), but remain constrained by interpersonal alignment mechanisms and an implicit
assumption that teams must be multi-person (O6).
Team Topologies, Platform Organizations, and Networked/Cellular structures demonstrate the

strongest overall compatibility with centaur development. These models combine decentralized authority,
modular boundaries, reduced cognitive load, and embedded or automatable governance mechanisms–
structural properties that support high-frequency iteration and minimize cross-boundary coordination
costs. Rendanheyi stands out as the only model that fully satisfies all six dimensions, offering a real-world
example of an organizational design that explicitly supports autonomous micro-units, platform-mediated
governance, internal markets, and dynamic recomposition of teams.

In contrast, Sociocracy 3.0, Holacracy, and Teal organizations excel in autonomy and decentralization
but depend heavily on synchronous, human-centric governance rituals and lack explicit support for
modular boundaries or automated alignment mechanisms. These characteristics limit their suitability
for organizations adopting centaur-based human–AI workflows. Overall, the analysis suggests that
organizational structures optimized for modularity, autonomy, and continuous governance provide the
best fit for centaur development, while traditional hierarchical models remain structurally incompatible.
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CASE ILLUSTRATION

To complement the theoretical analysis presented
so far, this section examines a single illustrative
case in which a non-trivial software system was
developed by a senior engineer working in partner-
ship with an AI coding agent (Blomgren, 2025a).
The system, lockd, was co-developed by one of the
co-authors of this essay together with an AI agent
during approximately five weeks of limited spare
time. The purpose of this case is not to general-
ize from anecdote, but to demonstrate concretely
how the coordination dynamics of centaur devel-
opment manifest when a single human–AI unit
undertakes work that would traditionally require
an entire team.

LOCKD IS A COORDINATION SERVICE —
a type of backend system that provides foun-
dational building blocks for many modern dis-
tributed applications. Such systems typically sup-
port capabilities that let other programs coordi-
nate shared work safely, such as: exclusive locks,
shared state, structured storage, simple queries,
and lightweight messaging. These capabilities
form the “plumbing” of distributed computing and
are normally provided by multiple separate sys-
tems (e.g., object stores, document stores, lock
managers, and queueing systems).
In contrast, lockd combines several of these

foundational capabilities into a single, cohesive
system. It supports:

• Exclusive leases for safe coordination be-
tween distributed processes;

• Structured state storage that lets clients
store and update arbitrary JSON-like data;

• Simple querying over stored documents;
• A lightweight at-least-once queue, enabling

task dispatch and background processing;
• Multiple storage backends, meaning the sys-

tem can run on a laptop, cloud object stores,
or local filesystems without modification.

To an experienced distributed-systems engineer,
the integration of these elements into a single, co-
herent system is immediately recognizable as com-
plex work: it spans concurrency control, storage
abstraction, error handling, consistency consider-
ations, and multi-backend operational concerns.
To non-specialists, it is helpful to view lockd as
an “infrastructure kernel” that applications can
trust for safe coordination—the sort of component
that, in industry, would typically be developed and
maintained by a small team of senior engineers.

WHY LOCKD IS NON-TRIVIAL

From an engineering perspective, lockd reflects
several forms of complexity that normally require
multiple specialists:

• Distributed systems complexity: building
safe coordination primitives requires careful
handling of race conditions, contention, and
failure scenarios;

• Storage and backend abstraction: support-
ing multiple backend engines requires design-
ing a clean, unified abstraction layer so that
all features behave consistently across imple-
mentations;

• Query processing: even simple querying re-
quires parsers, evaluators, and correct traver-
sal of structured state;

• Queue semantics: implementing at-least-
once delivery, visibility timeouts, and retry
logic is conceptually simple but operationally
subtle;

• Integration quality: testing across various
backends, ensuring consistent behaviour, and
producing one coherent binary all demand
continued architectural discipline.

None of these elements are individually exotic.
What is non-trivial is that they were all integrated
into a single system with coherent design, consis-
tent semantics, and comprehensive test coverage—
the kind of integration work that requires breadth
of experience and careful coordination if done by
a human team.
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HUMAN–AI COLLABORATION

According to the repository’s own documentation,
nearly all code in lockd was generated by an AI
coding agent, while the human senior engineer
(the co-author of this essay) acted as the system’s
architect, governor, and reviewer. The human
contributor:

• defined the architecture and its evolution;
• framed requirements and constraints;
• identified design flaws and corrected incor-

rect AI output;
• ensured consistency across components;
• created or refined the verification

mechanisms—tests, integration suites,
and other guardrails.

The AI coding agent, in turn:

• generated and iteratively refined large por-
tions of code;

• produced boilerplate and glue logic quickly;
• assisted with test scaffolding and repeated

structural transformations;
• explored alternative implementations to sat-

isfy constraints and performance goals.

This division of labour mirrors the centaur pat-
tern observed in other domains: the human pro-
vides expertise, judgment, context, and responsi-
bility; the AI provides speed, exhaustiveness, and
the ability to transform entire components in sec-
onds.

WHY THIS IS AN ILLUSTRATIVE
EXAMPLE

The fact that a senior engineer—working only in
spare time over roughly five weeks—could pro-
duce a system of this breadth and integration is
itself indicative of a dramatic shift in effective ca-
pability. In traditional settings, a project such as
lockd would typically involve:

• one or two engineers specializing in dis-
tributed coordination;

• another specializing in storage abstractions;
• perhaps a separate engineer focusing on

queueing semantics or API design;
• someone to maintain integration and test

suites;
• and a team lead or architect to maintain co-

herence across efforts.

The centaur unit (human + AI system) replaced
this entire multi-role pipeline. This does not imply
that the AI replaces the team; rather, it shows that
a human expert, when augmented by a capable AI
agent, can handle far more surface area than was
possible before. The AI accelerates execution and
exploration, while the human ensures correctness,
feasibility, and conceptual integrity.

IMPLICATIONS FOR THE ANALYSIS

The lockd case does not provide controlled exper-
imental evidence, nor does it demonstrate how
multiple centaur units coordinate at scale. How-
ever, it does serve as a concrete—and publicly
inspectable—example of a centaur unit perform-
ing work historically distributed across a team.
This aligns with the central claim of this essay:
that the unit of effective action in software devel-
opment is shifting. Coordination structures built
around multi-person teams will need to adapt as
AI agents allow senior engineers to operate as
high-capability micro-units, provided that suffi-
cient governance and oversight are maintained.
The case therefore functions as an existence

proof: under realistic constraints, a senior engi-
neer augmented by an AI coding agent can deliver
a cohesive, complex, multi-component system in a
timeframe that would have been implausible even
for a highly skilled individual only a few years ago.
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WHY DISTRIBUTED COORDINATION
SYSTEMS ARE HARD

Readers without a background in distributed sys-
tems may reasonably ask why a system such as
lockd is considered non-trivial. Coordination ser-
vices sit at the foundation of modern computing:
they mediate shared state, ensure correctness un-
der concurrency, and allow independent processes
to collaborate reliably. Although the individual
components of such systems can be explained sim-
ply, building them correctly is challenging because
they combine several categories of difficulty that
compound in practice.

CONCURRENCY IS INHERENTLY COMPLEX.
Whenever multiple programs act on shared data,
subtle timing differences can lead to inconsistent
outcomes. Coordination systems must prevent
race conditions, lost updates, and conflicting oper-
ations, even when many clients act simultaneously.
This requires careful reasoning about atomicity,
ordering, and isolation–properties that cannot be
retrofitted easily once the system exists.

FAILURE IS THE NORMAL CASE. Dis-
tributed systems cannot assume a stable environ-
ment. Storage devices fail, network connections
drop, processes restart, and clocks drift. Coordi-
nation logic must remain correct across all such
failures, which means building recovery paths,
retry logic, and idempotent operations. Designing
these cases is often more work than implementing
the “happy path” itself.

THE SYSTEM MUST BE PREDICTABLE
ACROSS BACKENDS. A coordination service
that supports multiple storage engines must
present one coherent behavioral model across
them, even if the underlying infrastructure be-
haves differently. This introduces tensions be-
tween abstraction and performance: the interface
must hide backend differences without forcing ev-
ery backend into a lowest-common-denominator
model.

CORRECTNESS MUST BE DEMONSTRATED,
NOT ASSUMED. Testing distributed coordina-
tion is fundamentally more difficult than testing
a single-threaded component. Integration tests
must simulate failures, restarts, interleavings, and
edge-case interactions across subsystems. This is
why such systems often include substantial test
suites, harnesses, and watchdog mechanisms.

SMALL DESIGN CHOICES HAVE SYSTEM-
WIDE CONSEQUENCES. Whether to retry an
operation, how to detect conflicts, how to track
metadata, or when to expire leases–these are
small local decisions that can affect global con-
sistency and performance. Coordination systems
require a coherent architecture because inconsis-
tencies in one part can undermine correctness else-
where.

REAL-WORLD REQUIREMENTS MULTIPLY
COMPLEXITY. Encryption, authentication, ob-
servability, performance constraints, container se-
mantics, and cloud compatibility all add layers of
engineering detail that must interlock cleanly. Ma-
ture coordination services are not just algorithms
but operationally robust systems.
Taken together, these factors explain why co-

ordination systems are typically developed by ex-
perienced teams over long time horizons. They
require sustained architectural reasoning, precise
engineering, rigorous testing, and careful han-
dling of edge conditions. That a centaur unit–one
senior engineer working with an AI agent–could
construct such a system in a few weeks highlights
both the accelerating potential of human–AI col-
laboration and the need to reassess how software
development work is organized in an era where
execution is no longer the primary bottleneck.
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IMPLICATIONS AND FUTURE
DIRECTIONS

The preceding sections examined how delivery
frameworks and organizational models align with
the coordination demands of centaur development
and illustrated these dynamics through a concrete
case. We now synthesize these findings and out-
line implications for software delivery, organiza-
tional design, and future research. While this
analysis does not claim universal prescriptions, it
reveals a set of structural pressures that organiza-
tions and practitioners will increasingly confront
as human–AI collaboration matures.

REVISITING THE CENTRAL QUESTION

This essay began with a simple but consequential
question: What happens to software delivery frame-
works and organizational structures when a single
senior engineer, augmented by agentic AI tools, can
accomplish work that previously required a multi-
person team? The evaluations in Evaluation of
Delivery Frameworks (p. 14) and Evaluation of
Organizational Models (p. 25) indicate that this
shift fundamentally alters the locus of coordina-
tion. In traditional settings, coordination overhead
arises primarily from interactions within teams. In
centaur development, this overhead is reduced or
eliminated inside a human–AI unit, while coordi-
nation between units, systems, and organizational
boundaries becomes the central challenge.

THE EMERGENCE OF THE CENTAUR
UNIT

Across the analysis, the centaur unit—a human ex-
pert working closely with one or more AI agents—
emerges as a meaningful abstraction. A centaur
unit collapses what were previously distinct roles
(architect, developer, reviewer, tester, operations
engineer) into a single cognitive locus supported
by machine-driven execution and exploration. The
effectiveness of this unit depends on human judg-
ment, verification, and direction, but its execution
capacity is amplified by AI agents that can produce
and refine artifacts rapidly and at scale.
The viability of centaur units does not imply

that human teams disappear, nor that AI replaces
expertise. Instead, the centaur unit becomes a new
“unit of production” in software development, ex-
isting alongside human-only teams and automated

systems. This reframes coordination problems:
instead of managing complex dynamics within
teams, organizations must design structures that
allow many autonomous, high-capability units to
interact safely and coherently.

IMPLICATIONS FOR SOFTWARE
DELIVERY FRAMEWORKS

The delivery framework evaluations in Evalu-
ation of Delivery Frameworks (p. 14) show a
marked pattern. Frameworks designed around
synchronous rituals, fixed iteration cycles, and
rigid role structures (Scrum, SAFe, Waterfall) ex-
hibit low compatibility with centaur development.
Their coordination mechanisms presuppose stable,
medium-sized human teams and do not translate
cleanly to settings where execution is performed
largely by automated systems under the guidance
of a single senior engineer.
In contrast, frameworks emphasizing continu-

ous flow, lightweight practices, automation, and
rapid experimentation (Kanban, Lean Startup,
DevOps/SRE) demonstrate strong compatibility.
These approaches treat delivery not as a sequence
of human meetings but as a continuous socio-
technical feedback system, which aligns well with
human–AI workflows that iterate at high fre-
quency. Automated governance and verification
(D4) emerge as central pillars: when AI agents
produce a large volume of artifacts, test suites,
pipelines, and observability systems become the
primary means of ensuring correctness and safety.

IMPLICATIONS FOR ORGANIZATIONAL
DESIGN

Evaluation of Organizational Models (p. 25) re-
veals a similarly strong pattern. Traditional hier-
archical and matrix structures score poorly across
all centaur-relevant dimensions. Their depen-
dence on centralized authority, synchronous cross-
functional alignment, and fixed team sizes makes
them structurally misaligned with autonomous
micro-units.
Modern organizational forms that emphasize

modularity, platformization, and decentralized
decision-making (Team Topologies, Platform Or-
ganizations, Networked/Cellular Organizations)
rank significantly higher. These models create
clear interaction surfaces between units, reduce
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coordination overhead, and support continuous it-
eration. The Rendanheyi micro-enterprise model
stands out as a real-world example of an orga-
nization built around autonomous, P&L-bearing
micro-units–an architecture conceptually similar
to how centaur units might operate at scale.

A key implication is that organizational design
in the centaur era shifts from managing teams to
managing boundaries. Platforms, internal markets,
service contracts, and architectural modularity
become organizational tools as much as technical
ones.

THE NEW COORDINATION PROBLEM

As execution becomes cheap and fast within a
centaur unit, the primary challenges move to the
inter-unit level:

• How do autonomous units coordinate with-
out recreating human team overhead?

• What structures ensure alignment without
synchronous meetings?

• How do platform teams provide boundary
stability and governance at scale?

• How do organizations prevent fragmenta-
tion as autonomy increases?

These are not new challenges in organizational
theory, but centaur development increases their
importance. As the internal cohesion of each cen-
taur unit grows, so does the need for clear exter-
nal boundaries and automated governance mech-
anisms.

HUMAN WORK IN THE CENTAUR ERA

Centaur development does not diminish the rel-
evance of human expertise. If anything, it ele-
vates the value of senior engineers who can pro-
vide architectural judgment, contextual reasoning,
risk assessment, and verification. The human role
shifts from performing execution to steering it,
from producing artifacts to governing their cor-
rectness, and from coordinating with teammates
to coordinating across systems.

This raises practical questions for capability de-
velopment. How do junior engineers grow in a
world where much execution work is delegated to
AI? Organizations will need to invest in appren-
ticeship pathways, pairing structures, and oppor-
tunities for juniors to practice judgment under
guidance.

OPEN QUESTIONS AND FUTURE
RESEARCH

While the analysis in this paper highlights several
structural patterns, it also surfaces open questions
requiring further empirical and theoretical work.
Among them:

• Multi-centaur coordination: How do many
centaur units collaborate on shared architec-
tures without recreating team overhead?

• Governance and safety: What mechanisms
ensure that AI-driven execution remains safe,
verifiable, and aligned with organizational
goals?

• Boundary design: Which architectural pat-
terns (APIs, service contracts, platforms) best
support high-autonomy units?

• Organizational resilience: How do centaur-
heavy organizations handle failure, turnover,
and knowledge transfer?

• Skill development and human capital: How
will the distribution of expertise evolve when
execution is augmented by AI?

• Coordination economics: How will organi-
zations trade off the benefits of autonomy
against the risks of fragmentation?

These questions underscore that centaur devel-
opment represents not only a shift in execution but
a broader transformation in how software work is
organized, aligned, and governed.

SUMMARY. Centaur development alters the
economics of software engineering: execution be-
comes cheap, exploration accelerates, and coor-
dination within units largely disappears. As a re-
sult, coordination between units, automated gov-
ernance, modular architecture, and organizational
boundary design become the central challenges.
The frameworks and organizational models most
compatible with this future are those that opti-
mize for autonomy, modularity, and continuous,
automation-friendly workflows. Much remains to
be explored, but the trends identified here suggest
a significant reconfiguration of software delivery
and organizational design in the years ahead.
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CONCLUSION

Across the history of software engineering, the
constraints shaping delivery frameworks and orga-
nizational structures have been remarkably stable.
They have all assumed that software is built by
groups of humans whose primary limitation is cog-
nitive and communicative capacity. Methods and
structures—from functional hierarchies to Scrum,
from project governance to scaled frameworks—
arose as means of coordinating multiple people
working together under these constraints. The
central contribution of this essay is to show that
this assumption, while historically reasonable, is
no longer adequate to describe the actual possi-
bilities of software work in the post–2025 era of
agentic AI systems.

The analysis presented here demonstrates that
when a single senior engineer, augmented by ca-
pable AI agents, can meaningfully perform work
previously requiring an entire team, the coordi-
nation landscape shifts. Many of the mechanisms
that justified rituals, roles, committees, meetings,
and procedural governance no longer operate at
their historical efficiency frontier. Within a centaur
unit, execution is fast, iteration is cheap, and intra-
unit coordination costs are near zero. Under such
conditions, many assumptions embedded in tra-
ditional delivery frameworks and organizational
models become structural misfits rather than en-
ablers.
The delivery-framework evaluation revealed

that methods built around synchronous team cer-
emonies, fixed iteration cycles, and rigid role
boundaries (e.g., Scrum, SAFe, PRINCE2, Water-
fall) offer limited compatibility with centaur de-
velopment. Their coordination primitives assume
multiple humans negotiating a shared plan in real
time, an assumption that no longer holds when the
unit of production becomes a human–AI hybrid. In
contrast, lightweight, flow-oriented, automation-
first frameworks (Kanban, Lean Startup, De-
vOps/SRE) map more closely to centaur devel-
opment because they replace ceremony with feed-
back loops and role specialization with capability-
based autonomy. They treat the delivery system as
a continuously evolving socio-technical feedback
network rather than a schedule of events.
The organizational-model evaluation reached

parallel conclusions. Traditional hierarchical, divi-
sional, and matrix structures rely on multi-layered
authorities, synchronous cross-team alignment,

and stable multi-human teams. These structures
scored uniformly poorly across autonomy, decen-
tralization, cross-boundary efficiency, governance
integration, and micro-unit accommodation. In
contrast, modern modular forms—Team Topolo-
gies, Platform Organizations, Networked/Cellular
structures—and especially Rendanheyi’s micro-
enterprise model showed strong compatibility
with centaur development. These models are built
not around managing teams but around manag-
ing boundaries: APIs, service contracts, market-
places, and platform interfaces. As execution ac-
celerates, boundaries—not ceremonies—become
the primary coordination mechanism.
The case illustration of lockd served to ground

the theoretical analysis in a concrete, publicly
available artifact. It showed how a single senior
engineer, working in partnership with an AI agent,
can produce in weeks a system that spans dis-
tributed coordination, storage abstraction, queue-
ing, querying, encryption, and integration across
multiple backends. This does not prove that all
teams or all domains canwork this way; nor does it
suggest that AI replaces teams. Instead, it demon-
strates that the assumptions underpinning tradi-
tional coordination models no longer hold univer-
sally. Where execution can be delegated to AI, the
human becomes the architect, verifier, and gov-
ernor, and the human–AI unit becomes a micro-
enterprise capable of end-to-end delivery.

This shift is not merely a technical improvement;
it is a structural one. It reconfigures the economics
of software development. Historically, the costli-
est activities were those involving human execu-
tion and human coordination. Now, for certain
classes of work, execution is no longer the bottle-
neck. Coordination, verification, and boundary
management become the limiting factors. Soft-
ware engineering moves from being a predomi-
nantly execution-constrained discipline to being a
coordination-constrained one. This echoes long-
standing insights from organizational theory, but
in a new technological context where the unit of
effective production is no longer a team but the
centaur unit.
This transformation also introduces new chal-

lenges. Multi-centaur coordination, boundary de-
sign, automated governance, and organizational
resilience under high-autonomy conditions are
complex questions that require further research.
Moreover, the cultivation of human expertise—
especially for junior engineers—becomes more
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important, not less. AI expands what experts can
do, but it does not teach judgment, architectural
reasoning, or responsibility. These remain irre-
ducibly human competencies and must be devel-
oped intentionally.

Yet the potential is profound. The centaur unit
may represent one of the most significant shifts in
the history of software engineering–comparable in
impact to the emergence of high-level languages,
interactive computing, or the rise of the inter-
net. It does not diminish human creativity or
agency; it amplifies it. It offers a future in which
small, highly capable human–AI units can build,
explore, and iterate at speeds previously unattain-
able, while platforms, architectures, and organiza-
tional structures evolve to support them. Realizing
this potential responsibly will require new forms
of governance, new delivery practices, and new
organizational designs, but the foundations out-
lined in this essay provide a starting point for that
exploration.

As software systems grow in ambition and com-
plexity, and as AI systems grow in capability, the
question is no longer whether centaur develop-
ment will reshape how we build and organize
software work, but how we choose to shape the
structures that support it. This essay offers one
framework for understanding that choice and in-
vites researchers, practitioners, and leaders to con-
tinue the conversation.

CAVEATS: HERE BE DRAGONS

The results described in Case Illustration (p. 39)
regarding lockd (Blomgren, 2025a)—and
other projects such as pkt.systems/pslog and
pkt.systems/kryptograf—are not a free lunch.
They rely on a way of working that is still unevenly
distributed: the ability to externalise intent clearly,
to design verification harnesses that keep fallible
agents on a safe path, and to treat AI output
as a raw material for disciplined engineering
rather than as an oracle. In other words, centaur
development is as much a skill and a mental model
as it is a tooling choice. Two engineers with
access to the same state-of-the-art agent platform
will not produce the same outcomes if one has
rebuilt their habits around iterative, test-first,
agent-aware workflows and the other has not.
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POSTSCRIPT:
AFTER ACTION REVIEW

The After Action Review (AAR) is a structured re-
flective practice originating in the United States
Army in the late 1970s. It was designed to help
small units rapidly capture and disseminate op-
erational learning in dynamic, high-stakes en-
vironments. Over time, it spread across NATO
militaries and armed forces globally, becoming a
standard mechanism for post-mission reflection
in infantry, aviation, and logistics units. Civil-
ian emergency services—including fire brigades,
wildfire response teams, and crisis-management
organizations—soon adopted it as well, valuing
its emphasis on honest, non-punitive learning and
rapid adaptation. Across these domains, the AAR
serves as a disciplined method for transforming
lived experience into actionable knowledge. In the
context of centaur-style software development—
where a single human–AI unit performs the work
traditionally distributed across an entire team—
the small-unit AAR offers the most fitting ana-
logue: it focuses on cognition, judgment, and
adaptation rather than formal process audits.

WHAT WAS SUPPOSED TO HAPPEN

The original aim of the lockd exercise was modest.
The intention was to explore whether a complex
coordination system—one that would ordinarily
require a small team of senior engineers—could
be meaningfully advanced by a single developer
working in limited spare time, aided by an AI cod-
ing agent. The expectations were grounded in
decades of conventional software delivery expe-
rience: perhaps a basic scaffold would emerge,
perhaps one or two core capabilities would take
shape, and perhaps the exercise would illuminate
the practical limits of centaur-style development
in non-trivial distributed systems. The anticipated
outcome was exploratory rather than complete,
more architectural sketch than functioning plat-
form. The underlying assumption—consistent
with classic coordination theory (Brooks, 1995;
Conway, 1968) and contemporary accounts of hu-
man–AI teaming (Seeber, 2020; Schmutz, 2024)—
was that architectural breadth, concurrency con-
trol, and integration complexity would impose a
natural ceiling on solo development velocity.

WHAT ACTUALLY HAPPENED

The reality diverged sharply from these expec-
tations. The first end-to-end iteration of lockd
emerged not over months, but within roughly two
weeks. All planned features materialized quickly,
and then unplanned capabilities surfaced as well:
a lightweight queue, an indexed search mecha-
nism, a query language, and eventually prelimi-
nary support for XA transactions and federated
coordination across distributed lockd “islands.”
From the perspective of the initial architecture,
these capabilities seemed improbable for a single
engineer to deliver so rapidly. Yet high-frequency
iteration with the AI agent expanded the system’s
functional envelope far beyond the original scope.
Features normally associated with multi-engineer
teams became accessible to a single human–AI
unit. As discussed in the main body of this essay,
the limiting factor shifted from execution to the
human’s ability to maintain conceptual coherence
across a rapidly evolving codebase.

WHY IT HAPPENED

This acceleration occurred because the centaur
model collapses the execution bottleneck while
preserving—and in places intensifying—the cog-
nitive bottleneck. The AI coding agent removed
much of the friction traditionally associated with
implementation, refactoring, and exploratory
branching. Structural changes could be attempted
and reversed in minutes, and alternative designs
sketched and evaluated in hours rather than
weeks. This dynamic aligns with empirical find-
ings on AI-assisted development (Ercin, 2025;
Schreiber, 2025) and long-standing theories of
distributed cognition (Hutchins, 1995). However,
reduced execution cost produced a new form of
cognitive load for the human half of the centaur.
Instead of reasoning locally about a subsystem, the
engineer had to sustain global coherence across
an actively shifting architecture, acting simulta-
neously as architect, reviewer, integrator, and
governor–roles that human–AI teaming research
identifies as cognitively demanding under rapid
system change (Seeber, 2020; Schmutz, 2024).
The load was not heavier in quantity but broader
in scope: an ambient, whole-system cognitive
strain few existing practices prepare individuals
to manage.
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WHAT WE LEARNED

The most important lesson is not simply that
more features can now be produced more quickly–
striking though that fact may be. Rather, the un-
derlying configuration of human work has shifted
in a way that reinforces the core argument of
this essay. In the technical analysis, we propose
that agentic AI systems move software engineer-
ing from an execution-constrained discipline to a
coordination-constrained one. Within a centaur
unit, implementation becomes inexpensive and
fast, while the dominant costs migrate to architec-
tural coherence, verification, and cross-boundary
alignment. The lockd experience offers a con-
crete, lived confirmation of this hypothesis: a sin-
gle senior engineer can now span roles that previ-
ously required a full team, but doing so demands
a sustained, system-level cognitive posture that
is qualitatively different from traditional develop-
ment.
This cognitive posture is best understood as

an applied form of systems thinking. The engi-
neer can no longer occupy a single layer of the
stack; he must inhabit all layers simultaneously,
continuously integrating behaviour across concur-
rency primitives, storage abstractions, query se-
mantics, operational concerns, and evolving exten-
sion points. This aligns closely with foundational
work on systems thinking (Senge, 1990; Rich-
mond, 1993; Sterman, 2000) and contemporary
definitions of the skill as the ability to reason about
interconnected structures, feedback loops, and
dynamic complexity (Arnold and Wade, 2015).
What is notable is that even a developer with
nearly thirty years of experience in distributed sys-
tems experiences this as qualitatively new cogni-
tive terrain. Centaur development does not merely
magnify traditional expertise; it reconfigures it.
These observations resonate with broader so-

cietal forecasts. The World Economic Forum’s
Future of Jobs reports (Forum, 2023; Forum,
2020; Forum, 2018) increasingly identify systems
thinking–and its close relative, systems analysis
and evaluation–as among the core cognitive skills
expected to grow in importance over the coming
decade. These reports argue that as technological
and socio-technical environments become more
complex, human value creation depends less on
narrow task execution andmore on integrative rea-
soning across interconnected systems. This predic-
tion mirrors exactly the shift observed in centaur

development: as execution accelerates, architec-
tural boundaries, governance mechanisms, and
verification strategies become the primary lever-
age points.
Seen in this light, the centaur developer be-

comes a micro-scale embodiment of the emerg-
ing skill profile anticipated by both organizational
theory and labour-market research. The human
contribution shifts from manual production to the
orchestration of complex systems in partnership
with increasingly capable machines. The earlier
sections of this article analyze how delivery frame-
works and organizational structures might adapt
to such autonomous units; this AAR adds the cor-
responding cognitive dimension. It underscores
that what distinguishes effective centaur develop-
ers is not the ability to type faster or recall more
APIs, but the ability to expand one’s system bound-
ary without losing conceptual integrity or ethical
responsibility.

The experience with lockd thus illustrates both
the promise and the strain of this new mode of
work. It demonstrates that a centaur unit can
achieve architectural and functional breadth once
reserved for teams, while it also reveals the cog-
nitive demands of maintaining coherence at ma-
chine speed. The result is a development model
in which the true “10×” does not lie merely in
throughput, but in the ability to design tools,
practices, and organizational structures that al-
low human judgment and machine execution to
reinforce—rather than overwhelm—one another.
In this sense, the AAR does not simply close the
narrative of this essay; it situates centaur devel-
opment within a broader intellectual and societal
trajectory, pointing toward a future where systems
thinking becomes not just a recommended skill,
but an operational necessity for the practitioners
who inhabit the expanding frontier of human–AI
collaboration.
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